期刊文献+

我国网上拍卖竞买者出价行为特征分析——基于函数性稀疏数据聚类方法的实证研究 被引量:3

An Empirical Analysis of Chinese Bidders' Bidding Behavioral Characteristics in Online Auctions Based on Clustering Method of Sparsely Observed Functional Data
下载PDF
导出
摘要 近年来,如何从个人角度分析竞买者出价行为成为研究难点。本文运用基于函数性稀疏数据聚类方法从竞买者个人角度定义了基于条件期望的距离矩阵,并结合多维尺度分析方法(MDS)和相平面图分析法对竞买者出价行为特征进行聚类分析。结果表明,按出价时间、金额、出价能量以及获胜概率可将竞买者分为显著的四类。其中,经验丰富型竞买者获胜概率最高,势在必得型竞买者获胜意愿最强烈,缺乏经验型竞买者退出竞拍时间较早导致获胜概率较低,围观型竞买者由于竞拍意愿不强烈所以获胜概率最低。 In recent years,how to analyze bidding behavior from the perspective of single bidder has always attracted many attentions.By using of the clustering methods of sparsely observed functional data,we define the distance matrix and carry out a cluster analysis to bidders' bidding trajectories with the help of Multidimensional Scaling(MDS)and phase planes.The results indicate that there are four distinct clusters of Chinese on-line bidders' bidding patterns,namely Experienced Bidder,Green Hand,Strong Minded Bidder and Participants.They vary in bidding time,bidding amount and winning probability.
作者 曹珂 严明义
出处 《当代经济科学》 CSSCI 北大核心 2017年第6期115-121,共7页 Modern Economic Science
关键词 稀疏数据 函数性聚类分析 出价行为特征 网上拍卖 Sparse data Clustering method on functional data Bidding behavioral characteristics Online auction
  • 相关文献

二级参考文献13

  • 1Jank W,Shmueli G. Profiling price dynamics in onlineauctions using curve clustering [ EB/OL]. http://ssrn.com/abstract =902893 , 2005. 被引量:1
  • 2Wang S S,Jank W,Shmueli G. Explaining and forecas-ting online auction prices and their dynamics using func-tional data analysis[ J] . Journal of Business and Econom-ic Statistics, 2008,26(2) :144 - 160. 被引量:1
  • 3Menasce D A, Akula V. Improving the performance ofonline auction site through closing time rescheduling[A] . The First International Conference on QuantitativeEvaluation of Systems[ C]. QEST’ 04,2004. 186 - 194. 被引量:1
  • 4Bajari P,Hortacsu A. Winner’s curse, reserve prices andendogenous entry: Empirical insights from eBay auctions[J] . Rand Journal of Economics,2003 , 2(2),329 -355. 被引量:1
  • 5Borle S,Boatwright P, Kadance J B. The timing of bidplacement and extent of multiple bidding: An empiricalinvestigation using ebay online auctions [ J ] . StatisticalScience, 2006, 21(2) :193 -207. 被引量:1
  • 6Roth A E, Ockenfels A. Last - minute bidding and therules for ending second - price auctions : Theory and evi-dence from natural experiment on the intemet[ J] . Amer-ican Economic Review, 2002,78(4) :806 -823. 被引量:1
  • 7Wilcox R T. Experts, amateurs: The role of experience ininternet auctions [ J]. Marketing Letters,2000,11 (4):363 -374. 被引量:1
  • 8中国互联网络信息中心(CNNIC).2012年中国网络购物市场研究报告[EB/OL]. http;//www. cnnic.net. cn/ hlwfzyj/ hlwxzbg/dzswbg/201304/P020130417543965742695. pdf,2013 -04-17. 被引量:1
  • 9中国互联网络信息中心(CNNIC).2013年中国网络购物市场研究报告[EB/OL]. http:// www. cnnic.net. cn/hlwfzyj/hlwxzbg/dzswbg/201404/P020140421360912597676. pdf [EB/OL],2014-04-21. 被引量:1
  • 10Ramsay J 0 ,Silverman B W. Functional data analysis(second edition) [M].北京:中国科学出版社,2006. 被引量:1

共引文献1

同被引文献63

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部