期刊文献+

PLS算法在多维数据挖掘判别分类中的研究及应用 被引量:1

RESEARCH AND APPLICATION OF PLS ALGORITHM FOR DISCRIMINANT CLASSIFICATION IN MULTIDIMENSIONAL DATA MINING
下载PDF
导出
摘要 针对高维少样本问题,利用偏最小二乘PLS模型,构造适合于小样本问题的挖掘算法。即在PLS的统一框架下,实现维数约简与分类学习,并在基因表达谱(Colon)癌数据分类问题中,实现PLS对小样本数据的挖掘与可视化。与经典算法SVMs进行比较分析,结果验证了PLS算法对高维少样本数据挖掘问题的有效性和可靠性。 For high dimension small sample problem, in this paper, we use the partial least squares (PLS) model to construct a mining algorithm which is suitable for small sample problem. That is, in the unified framework of PLS, we realized the dimension reduction and classification learning, in the classification of Colon cancer using gene expression profile data, the data mining with small sample by PLS and the visualization of the result were implemented. Compared with the classical algorithm SVMs, the results show that our PLS algorithm is effective and reliable for data mining in high dimension and small sample.
出处 《计算机应用与软件》 2017年第11期58-63,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61673327) 福建省中青年教师教育科研项目(JA13355)
关键词 广义小样本 偏最小二乘 基因表达谱 Generalized small-sample Partial least squares (PLS) Gene expression profiles
  • 相关文献

参考文献6

二级参考文献69

  • 1丁世飞,靳奉祥,史忠植.基于PLS的信息特征压缩算法[J].计算机辅助设计与图形学学报,2005,17(2):368-371. 被引量:7
  • 2蒋国兴,江志红,金龙,何慧.偏最小二乘回归方法(PLS)在短期气候预测中的应用[J].数学的实践与认识,2006,36(8):266-273. 被引量:9
  • 3王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,2000. 被引量:21
  • 4Cox T, Cox M. Multi-dimensional scaling[ M]. London: Chapman & Hall, 1994. 被引量:1
  • 5Jolliffe I T. Principal component analysis [ M ]. New York: Springer- Verlag. 1986. 被引量:1
  • 6Fisher R A. The use of multiple measurements in taxonomic problems [J]. Annals of Eugenics. 1936, 7(2) : 179-188. 被引量:1
  • 7Zhang Z Y, Zha H Y. Principal manifolds and norilinear dimensionali- ty reduction via local tangent space alignment [ J ]. SIAM Journal of Scientific Computing. 2004, 26 ( 1 ) : 313 - 338. 被引量:1
  • 8Tenenbaum J B, Sila A V, Langford J C. A global geometric frame- work for nonlinear dimensionality reduction [ J ]. Science. 2000, 290 (5500) : 2319 -2323. 被引量:1
  • 9Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science. 2000, 290(5500): 2323-2326. 被引量:1
  • 10Donoho D L, Grimes C. Hessian eigenmaps: locally linear embed- ding, techniques for high-dimensional data [ J ]. PNAS. 2003, 100 (10) : 5591 -5596. 被引量:1

共引文献29

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部