期刊文献+

广义改进的KdV方程的守恒差分算法及其收敛性分析

Conservative Algorithm and Convergence Analysis for the General Improved KDV Equation
下载PDF
导出
摘要 讨论了具有选择性服务的理发店M/G/1排队系统.此系统通过选取空间及定义算子,将模型方程转化成Banach空间中抽象的Cauchy问题,运用C0半群的理论,证明系统算子是耗散算子,得出系统算子的共轭算子及其定义域,并证明了0是系统算子的简单本征值且是虚轴上唯一的谱点,最后由算子的谱分析得到系统趋于稳定的时间依赖解. We discussed the barber's selective service M/G/1 queueing system. By choosing state space and defining operators of systems,we transfer model into an abstract Cauchy problem. Studying the nature of the system operator,that is using C0-semigroup theory,we first prove the system operator is a dissipative operator operator. Then we obtain the adjoint operator of the system operator and its domain. Furthermore,we prove that the unique and nonnegative stability solution of system is the eigenvector of system operator corresponding to eigenvalue 0. Finally by the Spectral analysis of operator,the time dependent solution of the system tends to be stable is obtained.
作者 霍慧霞 原文志 HUO Hui-xia YUAN Wen-zhi(Department of Mathematics, Tai Yuan Normal University, Shanxi Yuci 030619, China)
出处 《淮阴师范学院学报(自然科学版)》 CAS 2017年第3期195-199,共5页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 M/G/1排队系统 耗散算子 虚轴 系统稳定性 M/G/1 queueing system dissipative operator imaginary axis system stability
  • 相关文献

参考文献5

二级参考文献12

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部