摘要
研究了附有选择性服务与无等待能力的M/G/1排队系统.运用C_0半群的理论,证明了系统算子是稠定的预解正算子,得出了系统算子的共轭算子及其定义域,并证明了系统算子的增长界为0.最后运用了预解正算子中共尾的概念及相关理论,证明了系统算子的谱上界也是0.
We investigate the M/G/1 queueing system with additional optional service and no waiting capacity.Using Co-semigroup theory,we first prove the system operator is a densely defined resolvent positive operator.Then,we obtain the adjoint operator of the system operator and its domain.Furthermore,we prove that 0 is the growth bound of the system operator.Finally,we show that 0 is also the upper spectral bound of the system operator using the concept of cofinal and relative theory.
出处
《应用泛函分析学报》
CSCD
2013年第2期177-184,共8页
Acta Analysis Functionalis Applicata
基金
黑龙江省自然科学青年基金项目(QC2010024)
关键词
M/G/1排队系统
预解正算子
共轭算子
增长界
共尾
谱上界
M/G/1 queueing system
resolvent positive operator
adjoint operator
growth bound
cofinal
upper spectral bound