期刊文献+

基于颜色的压缩层次图像表示方法

Color based compact hierarchical image representation
下载PDF
导出
摘要 空间金字塔模型在每层中把图像划分成细胞单元用于给图像表示提供空间信息,但是这种方式不能很好地匹配对象上的不同部分,为此提出一种基于颜色的层次(CL)划分算法。CL算法从多特征融合的角度出发,通过优化的方式在不同层次中得到每个类别中有判别力的颜色,然后根据每层中有判别力的颜色对图像进行迭代的层次划分;最后连接不同层次直方图用于图像表示。为了解决图像表示维度过高的问题,采用分化信息理论的特征聚类(DITC)方法对字典进行聚类用于字典降维,并用压缩生成的字典进行最终的图像表示。实验结果表明,所提方法能够在Soccer,Flower 17和Flower 102上取得良好的识别效果。 The spatial pyramid matching method provides the spatial information by splitting an image into different cells. However, spatial pyramid matching can not match different parts of the objects well. A hierarchical image representation method based on Color Level (CL) was proposed. The class-specific discriminative colors of different levels were obtained from the viewpoint of feature fusion in CL algorithm, and then an image was iteratively split into different levels based on these discriminative colors. Finally, image representation was constructed by concatenating the histograms of different levels. To reduce the dimensionality of image representation, the Divisive Information-Theoretic feature Clustering (DITC) method was used to cluster the dictionary, and the generated compact dictionary was used for final image representation. Classification results on Soccer, Flower 17 and Flower 102 datasets, demonstrate that the proposed method can obtain satisfactory results in these datasets.
出处 《计算机应用》 CSCD 北大核心 2017年第11期3238-3243,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61402462) 国家社会科学基金资助项目(17BTQ068) 河北省教育厅青年基金资助项目(QN2015099) 中央司法警官学院校级科研项目(XYZ201602) 教育部人文社会科学研究青年基金资助项目(15YJC630021) 河北省自然科学基金青年科学基金资助项目(F2018511002) 河北大学中西部提升综合实力专项资金资助项目~~
关键词 有判别力的颜色 层次 维度约减 分化信息理论的特征聚类 对象识别 discriminative color hierarchy dimensional reduction Divisive Information-Theoretic feature Clustering(DITC) object recognition
  • 相关文献

参考文献3

二级参考文献21

  • 1Fei Fei L, Perona P. A bayesian hierarchical model for learning nat- ural scene categories [ C ]. Computer Vision and Pattern Recogni- tion, CVPR 2005, IEEE Computer Society Conference on. IEEE, 2005,2:524-531. 被引量:1
  • 2Wang Q ,Wan S, Yue L, et al. Visual attention based bag-of-words model for image classification [ C ]. Sixth International Conference on Digital Image Processing. International Society for Optics and Photonics ,2014:91591P-91591P-7. 被引量:1
  • 3Li X C, Zhao C, Cang Y. Face recognition using the improved bag of words model [ C ]. Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Third International Confer- ence on,IEEE,2013:772-775. 被引量:1
  • 4Kleber F, Diem M, Sablatnig R. Form classification and retrieval u-sing bag of words with shape features of line structures[ C]. IS&T/ SPIE Electronic Imaging. International Society for Optics and Pho- tonics ,2013:902107-902107-9. 被引量:1
  • 5Tani Y, Hotta K. Robust human detection to pose and occlusion u- sing bag-of-words[ C]. Pattern Recognition (ICPR) ,22nd Interna- tional Conference on ,IEEE,2014:4376-4381. 被引量:1
  • 6Thai N D, Le T S, Thoai N, et al. Learning bag of visual words for motorbike detection [ C ]. Control Automation Robotics & Vision ( ICARCV), 2014 13th International Conference on, IEEE, 2014 : 1045-1050. 被引量:1
  • 7Giouvanakis E, Kotropoulos C. Saliency map driven image retrieval combining the bag-of-words model and PLSA [ C ]. Digital Signal Processing ( DSP), 19th International Conference on, IEEE,2014 : 280-285. 被引量:1
  • 8Lazebnik S, Schmid C, Ponce J. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories [ C ]. Computer Vision and Pattern Recognition,IEEE Computer Society Conference on ,IEEE,2006,2:2169-2178. 被引量:1
  • 9Bosch A,Zisserman A,Munoz X. Representing shape with a spatial pyramid kernel [ C ]. Proceedings of the 6th ACM International Conference on Image and Video Retrieval,ACM,2007:401-408. 被引量:1
  • 10Yang Y,Newsara S. Spatial pyramid co-occurrence for image clas- sification [ C ]. Computer Vision ( ICCV), IEEE International Con- ference on, IEEE,2011 : 1465-1472. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部