期刊文献+

基于容器技术的云计算资源合理调度方法研究 被引量:2

Research on cloud computing resource scheduling method based on container technology
下载PDF
导出
摘要 传统基于Hypervisor模型的云计算资源调度方法存在长时间得不到调度,调度性能低的问题。针对该问题,设计基于容器技术的云计算资源合理调度方法,设计了调度系统的架构以及调度流程。详细说明了虚拟机迁移时间判断流程以及被迁移虚拟机选择流程。采用Migrate方法完成虚拟机的迁移,资源统计过程通过调用Libvirt的接口实现通信,并通过近似的方式运算虚拟机CPU使用率,降低了云计算资源调度时的数据中心能耗。经过测试表明,所提方法稳定性高,总体性能优,达到了预期目标。 As the traditional cloud computing resource scheduling method based on the Hypervisor model has long scheduling delay and low scheduling performance,a cloud computing resource scheduling method based on the container technology is proposed,and the architecture and dispatch process of the scheduling system are designed.The judging process of virtual machine migration time and the selection process of the migrated virtual machine are elaborated.The Migrate method is adopted to accomplish the virtual machine migration.The Libvirt interface is invoked to realize communication during the resource statistical process.The CPU utilization rate of the virtual machine is obtained by means of approximate computations,which reduces energy consumption of the data center during cloud computing resource scheduling.The test results show that the proposed method has high stability and excellent total performance,and has achieved the anticipated goal.
作者 邵海军
出处 《现代电子技术》 北大核心 2017年第22期33-35,共3页 Modern Electronics Technique
基金 中国教育学会科研规划课题(0707398B)
关键词 容器技术 云计算 资源调度 CPU使用率 container technology cloud computing resource scheduling CPU utilization rate
  • 相关文献

参考文献9

二级参考文献74

  • 1孟凡超,张海洲,初佃辉.基于蚁群优化算法的云计算资源负载均衡研究[J].华中科技大学学报(自然科学版),2013,41(S2):57-62. 被引量:13
  • 2杨铁利,许惠平.网格技术在地理信息服务的应用研究[J].微电子学与计算机,2006,23(10):141-143. 被引量:7
  • 3ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: a Berkeley view of cloud computing [ J ]. Communications of the ACM,2010,53(4) :50-58. 被引量:1
  • 4YANG X S. Nature inspired recta-heuristic algoritms [ M ]. 2nd ed. Frome, UK : Luninver Press ,2010:97-104. 被引量:1
  • 5GONZALEZ J R. Nature inspired cooperative strategies for optimiza- tion [ M ]. Berlin : Springer-Verlag, 2010 : 65- 74. 被引量:1
  • 6DEEP K ,BANSAL J C. Mean particle swarm optimisation for function optimization [ J ]. Computational Intelligence Studies, 2009, 1 (1) :72-91. 被引量:1
  • 7ARMBRUST M, FOX A, GRIFFITH tL A view ofcloud computing[J]. Communications of the ACM, 2010,53(4) : 50 - 58. 被引量:1
  • 8COELLO C, CARLOS A, LECHUGA M S. MOPSO.. a proposal for multiple objective particle swarm optimization [C]// Proceedings of IEEE Congress on Evolutionary Computation, USA, Honolulu: IEEE, 2002:1051-1056. 被引量:1
  • 9GOIRI I, GUITART J, TORRES J. Characterizing cloud federation for enhancing providers profit [C ] // 3rd International Conference on Cloud Computing (CLOUD 2010), 2010 : 123 - 130. 被引量:1
  • 10Wei Hao,YEN I L,THURAISINGHA M B.Dynamic service and data migration in the clouds[C].IEEE COMPSAC,2009:134-136. 被引量:1

共引文献62

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部