期刊文献+

云环境下基于动态蚁群遗传算法的调度方法研究 被引量:3

Research of Scheduling Method Based on Dynamic Ant Colony Genetic Algo-rithm in Cloud Environment
下载PDF
导出
摘要 当前,随着云计算技术的发展,动态资源调度问题越来越受到大家的关注。针对蚁群算法在虚拟云环境下求解最佳调度路径的最小化,并不能满足资源调度最佳路径寻址与收敛性的问题。为了解决云计算调度应用的动态性与实时性,该文使用蚁群算法与遗传算法相结合的交叉混合调度策略。该策略算法使用动态编码方式,由蚁群算法根据信息素求出的最佳路径解作为遗传算法中的种子任务来优化遗传操作初始任务种群,与近年来原始算法在调度问题上相比较,文章提出的交叉算法调度策略具有明显的路径优化效果。仿真实验结果表明,动态蚁群遗传算法在云环境下任务资源调度最佳路径寻址、效率上具有明显的收敛效果。 At present,with the development of cloud computing technology,the problem of dynamic resource scheduling is causing more and more attention. The minimization of optimal scheduling method gained in the virtual cloud computing in view of the ant colony algorithm cannot meet the best path of resource scheduling for addressing and the problem of con- vergence. In order to solve the dynamic nature and real-time of cloud computing scheduling application the article use cross hybrid scheduling strategy which is the combination of ant colony algorithm and genetic algorithm. The strategy algorithm used dynamic encoding,taking the optimal path obtained by ant colony algorithm based on pheromone as the seed task in genetic algorithm for optimizing the genetic operations initial task population. And when it compares with the original algorithm in scheduling problem,the cross algorithm scheduling strategy proposed in this article has obvi- ous effects on path optimization. Simulation experimental results show that the dynamic ant colony genetic algorithm has obvious convergence efficiency on task resource scheduling optimal path for addressing in a cloud environment.
作者 尚志会 张建伟 蔡增玉 马琳琳 SHANG Zhi-hui ZHANG Jian-wei CAI Zeng-yu MA Lin-lin(CoUege of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002, China Software Engineering College,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
出处 《自动化与仪表》 2016年第11期11-15,共5页 Automation & Instrumentation
基金 国家自然科学基金资助项目(61672471) 河南省科技创新人才计划科技创新杰出青年项目(164100510019) 郑州市科技发展计划科技攻关项目(153PKJGG26) 郑州轻工业学院研究生科技创新基金资助项目
关键词 云计算 任务调度 遗传算法 蚁群算法 动态蚁群遗传算法 cloud computing task scheduling genetic algorithm ant colony algorithm dynamic ant colony genetic algorithm
  • 相关文献

参考文献10

二级参考文献68

  • 1林剑柠,吴慧中.基于遗传算法的网格资源调度算法[J].计算机研究与发展,2004,41(12):2195-2199. 被引量:70
  • 2熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 3蔡之华,彭锦国,高伟,魏巍,康立山.一种改进的求解TSP问题的演化算法[J].计算机学报,2005,28(5):823-828. 被引量:60
  • 4Zbigniew Michalewicz,David B Fogel.How to solve it:Modern heuristics[M].Berlin:Springer-Verlag,2000. 被引量:1
  • 5Xiong Shengwu,Li chengjun.A distributed genetic algorithm to TSP[C].Proceedings of the 4th World Congress on Intellegent Control and Automation.Shanghai:The Press of East China University of Science and Technology,2002:1827-1830. 被引量:1
  • 6David Applegate,Robert Bixby,Va(s)ek Chvátal,et al.Finding Tours in the TSP[R].University of Bonn:Research Institute for Discrete Mathematics,1999. 被引量:1
  • 7David Applegate,William Cook,André Rohe.Chained Lin-Kernighan for large traveling salesman problems[R].Rice University Houston:Department Computer,2000. 被引量:1
  • 8Chris Walshaw.A multilevel Lin-Kernighan-Helsgaun algorithm for the travelling salesman problem[R].Tech Rep 01/IM/80,Comp Math Sci,Univ Greenwich,London SE10 9LS,UK,2001. 被引量:1
  • 9Buyya R,Yeo C S,Venugopal S,et al.Cloud computing and emerging IT platforms:vision,hype,and reality for delivering computing as the 5th utility[J].Future Generation Cpmputer Systems,2009,25(6):599-616. 被引量:1
  • 10Armbrust M,Fox A,Griffith R,et al.A view of cloud computing[J].Communications of the ACM,2010,53(4):50-58. 被引量:1

共引文献147

同被引文献45

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部