摘要
Monoallelic gene expression refers to the phenomenon that all transcripts of a gene in a cell are expressed from only one of the two alleles in a diploid organism. Although monoallelic gene expression has been occasionally reported with bulk transcriptome analysis in plants, how prevalent it is in individual plant cells remains unknown. Here, we developed a single-cell RNA-seq protocol in rice and investigated allelic expression patterns in mesophyll cells of indica (93-11 ) and japonica (Nipponbare) inbred lines, as well as their F1 reciprocal hybrids. We observed pervasive monoallelic gene expression in individual mesophyll cells, which could be largely explained by stochastic and independent transcription of two alleles. By con- trast, two mechanisms that were proposed previously based on bulk transcriptome analyses, parent-of- origin effects and allelic repression, were not well supported by our data. Furthermore, monoallelically expressed genes exhibited a number of characteristics, such as lower expression levels, narrower H3K4me3/H3K9acJH3K27me3 peaks, and larger expression divergences between 93-11 and Nipponbare. Taken together, the development of a single-cell RNA-seq protocol in this study offers us an excellent opportunity to investigate the origins and prevalence of monoallelic gene expression in plant cells.
Monoallelic gene expression refers to the phenomenon that all transcripts of a gene in a cell are expressed from only one of the two alleles in a diploid organism. Although monoallelic gene expression has been occasionally reported with bulk transcriptome analysis in plants, how prevalent it is in individual plant cells remains unknown. Here, we developed a single-cell RNA-seq protocol in rice and investigated allelic expression patterns in mesophyll cells of indica(93-11) and japonica(Nipponbare) inbred lines, as well as their F1 reciprocal hybrids. We observed pervasive monoallelic gene expression in individual mesophyll cells, which could be largely explained by stochastic and independent transcription of two alleles. By contrast, two mechanisms that were proposed previously based on bulk transcriptome analyses, parent-oforigin effects and allelic repression, were not well supported by our data. Furthermore, monoallelically expressed genes exhibited a number of characteristics, such as lower expression levels, narrower H3K4me3/H3K9ac/H3K27me3 peaks, and larger expression divergences between 93-11 and Nipponbare. Taken together, the development of a single-cell RNA-seq protocol in this study offers us an excellent opportunity to investigate the origins and prevalence of monoallelic gene expression in plant cells.
基金
supported by the National Basic Research Program of China (2014CB943500)
the National Program for Support of Top-Notch Young Professionals
the Recruitment Program of Global Youth Experts
the State Key Laboratory of Plant Genomics (SKLPG2011B0103 and SKLPG2016C0219-01)