期刊文献+

基于ORBP和级联分类的实时行人检测算法 被引量:2

Real-time Pedestrian Detection Algorithm Based on ORBP and Cascade Classifier
下载PDF
导出
摘要 为解决复杂场景中目标检测实时性差和鲁棒性低问题,提出了一种基于软级联支持向量机(SVM)分类器的行人检测算法。该算法采用梯度方向二值模式(ORBP)为特征描述子,基于自适应特征选择与多级分类阈值构建软级联分类器。为确保样本选取的完备性,通过模糊估计随机构建正负样本集,结合快速特征点与中值流实现目标追踪。试验结果表明,在复杂场景中,该算法实时性优且鲁棒性高。 To solve the target detection problems of poor real-time performance and low robus t -ness in complex scene, an algorithm for the pedestrian detection is proposed based on soft cascade support vector machine (SVM) classifier. The oriented gradient rotated binary pattern (ORBP) feature is regarded as the image feature descriptor in the algorithm. Based on chosen adaptive fea-ture and multistage cascaded thresholds, a soft cascade classifier is constructed. To ensure the ra-tionality of sample selection, positive and negative sample sets are randomly constructed by fuzzy evaluating, and the target tracking is realized combined with the fast feature spot and the median- flow. Experimental results show that the algorithm has the excellent real-time performance and the high robustness in complex scene.
出处 《指挥信息系统与技术》 2017年第5期104-108,共5页 Command Information System and Technology
关键词 行人检测 支持向量机 软级联分类器 梯度方向二值模式 pedestrian de te c t ion support vector machine (SVM) soft cascade classifier oriented gradient rotated binary pattern (ORBP)
  • 相关文献

参考文献2

二级参考文献15

  • 1李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 2Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55(1) :119 - 139. 被引量:1
  • 3Viola P, Jones M J. Robust real-time object detection [C]//Proceedings of the 2nd International Workshop on Statistical and Computational Theories of Vision. Vancouver, Canada: [s. n. ], 2001 : 1 - 24. 被引量:1
  • 4Viola P, Jones M. Fast and robust classification using asymmetric AdaBoost and a detector cascade [C] // Advances in Neural Information Processing System 14. Cambridge, MA: MIT Press, 2002.-1311- 1318. 被引量:1
  • 5Ma Yong, Ding Xiaoqing. Real-time rotation invariant face detection based on cost-sensitive AdaBoost[C]// Proceedings of the IEEE International Conference on Image Processing. Barcelona, Spain: [s. n.], 2003: 921 - 924. 被引量:1
  • 6Fan Wei, Stolfo S, Zhang Junxin, et al. Adacost: Misclassification cost-sensitive boosting[C]// Proceedings of the 16th International Conference on Machine Learning. Bled, Slovena: [s. n. ], 1999:97 - 105. 被引量:1
  • 7Shapley L, Grofman B. Optimizing group judgmental accuracy in the presence of interdependeneies[J]. Public Choice, 1984,43:329 - 343. 被引量:1
  • 8Suneion A, Newman D J. UCI machine learning repo sitory[EB/OL]. [2008-12-16]. http://www. ics. uci. edu/~ mlearn/MLRepository, html. 被引量:1
  • 9Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature dist ributions[J]. Pattern Recognition, 1996,29 (1) :51-59. 被引量:1
  • 10Ahonen T, Hadid A, Pietik A M. Face recognition with local binary patterns[C] // Proceedings of ECCV 2004 Conference on I.ecture Notes in Computer Science 3021. [S.I.]:Springer,2004: 469-481. 被引量:1

共引文献13

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部