期刊文献+

LSHBMRPK-means算法及其应用 被引量:1

LSHBMRPK-means algorithm and its application. Computer Engineering and Applications
下载PDF
导出
摘要 针对传统的k-means聚类算法在处理大数据时算法时间复杂度极高和聚类效果不佳的问题,提出了LSHBMRPK-means算法,即基于局部敏感哈希函数的Map Reduce并行化的k-means聚类算法;针对推荐系统的可扩展性问题,将LSHBMRPK-means应用于基于聚类的协同过滤算法。此外,针对评分数据的稀疏性问题,使用LFM,即隐语义模型,对缺失值进行填充,进而提出了基于LFM的LSHBMRPK-means聚类算法。实验结果表明,LSHBMRPK-means聚类算法提高了聚类效率和质量,基于LFM的LSHBMRPK-means协同过滤算法具有较好的可扩展性,同时解决了因评分数据稀疏导致聚类质量不好的问题。 To deal with the problems that time complexity is extremely high and the result of clustering ispoor when basic k-means algorithm is used to handle on big data issues, the paper proposes LSHBMRPK-means algorithm, locality sensitive hashing-based Map Reduce parallelized k-means algorithm. Due to the scalability problem of recommendation system, the paper applies LSHBMRPK-means algorithm to cluster-based collaborative filtering algorithm. In addition, to handle on the issue of sparsity in the rating dataset, the paper uses the method of LFM to fill in the sparse rating dataset,and proposes LFM-based LSHBMRPK-means collaborative filtering algorithm. Primary experiments show that LSHBMRPKmeans can improve the efficiency and quality of clustering, the proposed algorithm combined with the filtering algorithm has a good scalability, and at the same time it has solved the problem of poor clustering quality caused by the sparse rating dataset.
作者 罗俊 李劲华
出处 《计算机工程与应用》 CSCD 北大核心 2017年第21期62-67,共6页 Computer Engineering and Applications
关键词 大数据 K-MEANS 局部敏感哈希函数 MAP REDUCE 推荐算法 big data k-means locality sensitive hashing function Map Reduce recommendation algorithm
  • 相关文献

参考文献6

二级参考文献175

  • 1李洁,高新波,焦李成.模糊CLOPE算法及其参数优选[J].控制与决策,2004,19(11):1250-1254. 被引量:4
  • 2Nature. Big Data [EB/OL]. [2012-10-02]. http,//www. nature, com/news/specials/bigdata/index, html. 被引量:1
  • 3Bryant R E, Katz R H, Lazowska E D. Big-Data computing : Creating revolutionary breakthroughs in commerce, science, and society [R]. [2012-10-02]. http:// www. cra. org/ccc/docs/init/Big_Data, pdf. 被引量:1
  • 4Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http://www, sciencemag, org/site/ special/data/, 2011. 被引量:1
  • 5Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with big data A community white paper developed by leading researchers across the United States [R/OL]. [2012-10-02]. http://cra, org/ccc/docs/init/bigdata whitepaper, pdf. 被引量:1
  • 6Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity [R/OL]. [ 2012-10-02 ]. http://www, mekinsey, corn/ Insights]MGI[Research/Teehnology _ and _ Innovation]Big _ data The next frontier for innovation. 被引量:1
  • 7World Economic Forum. Big data, big impact: New possibilities for international development [R/OL]. [2012- 10-02]. http://www3, weforum, org/docs/WEF TC MFS BigDataBigImpact_Briefing 2012. pdf. 被引量:1
  • 8Big Data Across the Federal Government [EB/OL]. [2012-10-02]. http://www, whitehouse, gov/sites/default/ files/microsites/ostp/big_data fact sheet_final_ 1. pdf. 被引量:1
  • 9UN Global Pulse. Big Data for Development:Challenges Opportunities [R/OL]. [ 2012-10-02 ]. http://www. unglobalpulse, org/proj ects/BigDataforDevelopment. 被引量:1
  • 10Times N Y. The age of big data fEB/OLd. [2012-10 -02]. http://www, nytimes, com/2012/02/12/sunday review/big- datas-impact in-the-world, html?pagewanted=all. 被引量:1

共引文献2536

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部