期刊文献+

需求和原料价格不确定下农产品供应链网络鲁棒优化设计 被引量:9

Robust optimal design of agri-food supply chain network under demand uncertainty and raw material price uncertainty
下载PDF
导出
摘要 针对产出单一产品的多级农产品供应链网络(agri-food supply chain network,ASCN)鲁棒优化设计问题,以降低不确定性风险和总成本为目标,建立了集成生产设施选址、产能决策和物流网络运输模式选择的混合整数规划数学模型。模型中同时考虑了需求和农产品原料价格的不确定性,并采用情景法来描述有关不确定性。通过案例计算分析验证了模型的有效性。采用一种基于基因型-表现型概念的改进二元粒子群(Binary Particle swarm optimization,BPSO)算法并融合自适应变异技术,发展出一种自适应改进BPSO算法(AMBPSO)求解ASCN设计问题。通过将AMBPSO与基础BPSO(BBPSO)、带自适应变异的BBPSO(ABBPSO)算法和改进BPSO(MPSO)就三个案例的计算对比,验证了算法的有效性。计算结果表明AMPSO优于现有的BBPSO和MBPSO算法。 The competition between modern agri-businesses is not only the competition between production enterprises but also the competition between the agri-food supply chain networks(ASCN) including the core production enterprises. To improve the competitiveness of ASCN, the strategic decision of optimal design of ASCN is crucial. The optimal design of ASCN is effective to improve the operation efficiency of ASCN and reduce the operation cost and operation risk. For traditional design of ASCN, all parameters including demand quantity and cost coefficients are assumed to be deterministic. Nevertheless, the uncertainties of supply, production and demand often exist in practice. Therefore, in this study we investigated the problem of robust optimal design of ASCN considering the uncertainties of supply and demand faced by ASCN. The aim is to develop a mathematical model for the robust optimal design of ASCN and is to present an effective optimization method to obtain robust solution for the addressed problem. In the first part, firstly the robust design problem of multi-echelon agri-food supply chain network(ASCN) with single non-perishable product is stated in detail. Then the parameters and variables of the optimization model are explained. Lastly, a mixed integer linear programming(MIP) model is presented for robust optimal design of ASCN, in order to minimize the sum of total cost of ASCN and the risk cost of uncertainty. The model integrates the decisions on facility location, capacity selection and transportation mode selection. In the model, the demand uncertainty and raw material price uncertainty are considered and are described by the scenario-based method. In the second part, a meta-heuristic named particle swarm optimization(PSO) is adopted to solve mid-to-large scale problems because the problem of robust design for ASCN belongs to the NP-hard problem. To avoid the stagnation of search of basic binary PSO(BBPSO), a newly proposed modified binary PSO(MBPSO) is utilized, which adopts the u
出处 《管理工程学报》 CSSCI CSCD 北大核心 2017年第4期178-185,共8页 Journal of Industrial Engineering and Engineering Management
基金 国家自然科学基金资助项目(71403114 No.71373116) 粮食公益性行业科研专项资助基金(201413005) 江苏省高校哲学社会科学研究基金资助项目(2014SJB135) 江苏高校优势学科建设工程资助项目 ‘青蓝工程’资助项目
关键词 农产品供应链网络 需求不确性 原料价格不确定 鲁棒优化 粒子群算法 Agri-food supply chain network Demand uncertainty Raw material price uncertainty Robust optimization Particle swarm optimization
  • 相关文献

参考文献14

二级参考文献104

共引文献106

同被引文献76

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部