期刊文献+

基于能源消耗周期的我国低碳城市发展模式研究 被引量:7

Development mode of low-carbon city in China based on the energy consumption cycle
原文传递
导出
摘要 为了实现节能减排目标,构建低碳城市已经成为未来城市发展的重要路径选择。我国正处于城镇化加速发展时期,城市差异性特征决定了低碳城市发展的方法和途径不同,必须探索适合自身的发展模式。文中基于城市能源消耗周期视角,选取6个评价指标,以我国35个副省级以上城市作为研究对象,采取2010-2014年的面板数据,通过自组织竞争神经网络法进行聚类分析,将35个城市划分为清洁能源型、能源消耗型、碳汇型和混合型四类发展模式,然后利用SYS-GMM方法对各类模式进行显著性分析,提出差异化的低碳城市发展模式及政策建议。 In order to achieve the goal of energy conservation and emission reduction, building low - carbon city has become an important path for the future development of the city. China now is in a period of accelerated de- velopment of urbanization, and the characteristics of urban differences determine the different ways and means of the development of low carbon city, so we must explore the development model for their own. Based on the process of urban energy consumption, we selected 6 indicators, chose 35 cities that belong to deputy provincial level in our country as the research object, carried on a cluster analysis based on panel data of 2010 -2014. The 35 cities were divided into four modes: clean energy mode, energy consumption mode, carbon sink type and mixed type. Then the SYS - GMM method was used to analyze the characteristics of all kinds of cities. In the end, the development modes and policy suggestions of the different low carbon cities were put forward.
出处 《干旱区资源与环境》 CSSCI CSCD 北大核心 2017年第9期20-25,共6页 Journal of Arid Land Resources and Environment
基金 国家自然科学基金项目(71373172 71172148) 天津大学自主创新基金项目(60304002)资助
关键词 低碳城市 发展模式 面板聚类分析 神经网络 系统广义矩估计 low - carbon city development mode panel data clustering analysis neural network SYS - GMM
  • 相关文献

参考文献13

二级参考文献146

共引文献488

同被引文献133

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部