期刊文献+

高斯核方向导数和RILPQ融合的人脸表情识别 被引量:1

Facial Expression Recognition Based on Gaussian Kernel Direction Derivative and RILPQ
下载PDF
导出
摘要 针对人脸表情识别中特征提取出纹理信息粗糙、边缘轮廓不清的问题,论文提出了一种基于高斯核方向导数与RILPQ相结合图像特征提取方法。在RILPQ算法中引入高斯核多方向导数形成滤波器,在支持向量机中进行表情分类,将算法应用于JAFFE数据集表情数据集。实验结果为在滤波窗口半径为11像素,论文算法识别率最优,并高于LPQ算法、RLPQ算法识别率。同时也证明,高斯窗窗口半径和滤波方向对算法的表情识别率有影响。 In view of the problem that the feature of facial expression recognition is not clear,this paper proposes a method of image feature extraction based on Gauss kernel direction derivative and RILPQ. In the RILPQ algorithm,the Gauss kernel multi direction derivative is introduced to form a filter,and the algorithm is applied to the expression data set of JAFFE data set. Experimental results for the filter window radius of 11 pixels,the algorithm recognition rate is optimal,and higher than the LPQ algorithm,RLPQ algorithm recognition rate. At the same time,it is proved that the Gauss window radius and the direction of filtering have effect on the recognition rate of the algorithm.
出处 《计算机与数字工程》 2017年第10期2013-2017,共5页 Computer & Digital Engineering
关键词 人脸表情识别(FER) 旋转不变局部相位量化(RILPQ) 各向高斯核函数及方向导数 支持向量机(SVM) facial expression recognition(FER) rotation invariant local phase quantization(RILPQ) anisotropic Gaussian kernel function and directional derivative support vector machine(SVM)
  • 相关文献

参考文献4

二级参考文献43

  • 1王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 2CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively with application to face verification [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC : IEEE Computer Society, 2005 : 539-546. 被引量:1
  • 3HOLUB A, MOREELS P, PERONA P. Unsupervised clustering for Google searches of celebrity images [C]//Proc of IEEE Conference on Face and Gesture Recognition. [S. l. ] : IEEE,2008:1-8. 被引量:1
  • 4WOLF L, HASSNER T, TAIGMAN Y. Descriptor based methods in the wild [C]//Proc of Workshop on Faces Real Life Images at ECCV. [S. l.] : Citeseer,2008 : 1 - 14. 被引量:1
  • 5CAO Zhi-min, YIN Qi, TANG Xiao-cu, et al. Face recognition with learning-based descriptor[ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. [ S.l. ] : IEEE,2010:2707-2714. 被引量:1
  • 6OJALA T, PIETIKAINEN M, HARWOOD A. A comparative study of texture measures with classification based on feature distributions [ J ]. Pattern Recognition, 1996,29 ( 1 ) :51- 59. 被引量:1
  • 7OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(7) :971-986. 被引量:1
  • 8AHONEN T, HADID A, PIETIKAINEN M. Face recognition with local binary patterns [ C ]//Proc of European Conference on Computer Vision. Berlin: Springer-Verlag,2004:469-481. 被引量:1
  • 9AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns: application to face recognition [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006,28 (12) : 2037-2041. 被引量:1
  • 10LOWE D. Distinctive image features from scale-invariant keypoints [J]. Int Journal of Computer Vision,2004,60(2) :91-110. 被引量:1

共引文献9

同被引文献4

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部