期刊文献+

Otsu准则的阈值性质分析 被引量:73

Characteristic Analysis of Threshold Based on Otsu Criterion
下载PDF
导出
摘要 分析Otsu阈值性质可以为应用和改进Otsu方法提供理论依据.证明了Otsu方法找出的最佳阈值是用该阈值分割出的两类的均值的平均值.当两类的类内方差差别较大时,Otsu方法的分割阈值将偏向类内方差大的一类,从而将类内方差大的一类的部分像素划分到类内方差小的类中.针对这种情况,提出了一种约束灰度范围的改进型Otsu方法.实验结果表明,新算法的性能明显优于传统的Otsu方法. The analysis of the properties of the threshold in the Otsu segmentation method can provide theoretical help for improving and applying the Otsu method.This paper proves a conclusion that the threshold of the Otsu method is the average of the means of two classes partitioned by this threshold.Thus,when the difference of the two within-class variances is large,the threshold of the Otsu method tends to be closer to the class with larger within-class variance,which means that more pixels of this class will be classified into the another class. To overcome this problem, this paper presents an improved Otsu algorithm by constraining the search range of the ideal segmentation threshold. Experimental results show the superiority of the proposed algorithm by yielding more reasonable segmentation results compared to the traditional Otsu method.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第12期2716-2719,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.30801314) 国家863高技术研究发展计划(No.2006AA02Z347)
关键词 图像分割 阈值选取 OTSU方法 image segmentation threshold selection Otsu criterion
  • 相关文献

参考文献9

  • 1Sezgin M, Sankrur B. Survey over image thresholding techniques and quantitative performance evaluation [ J ]. Journal of Electronic Imaging,2004, 13 (1) : 146 - 168. 被引量:1
  • 2Otsu N. A threshold selection method from gray-level histograms[ J] .IEEE Transactions on System Man and Cybernetic,1979,9 (1): 62-66. 被引量:1
  • 3范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 4Huifuang Ng. Automatic thresholding for defect detection[ J]. Pattern Recognition Letters, 2006,27 (14) : 1644 - 1649. 被引量:1
  • 5Qiao Yu,Hu Qingmao, Qian Guoyu, etc. Thresholding based on variance and intensity contrast[ J ]. Pattern Recognition, 2007, 40 (2) :596- 608. 被引量:1
  • 6Zhou Hou, Q Hu, Nowinski W L. On minimum variance thresholding[ J ]. Pattern Recognition Letters, 2006, 27 (14) : 1732- 1743. 被引量:1
  • 7Medina-Carnicer R, Madrid-Cuevas F J. Unimodal thresholding for edge detection[ J]. Pattem Recognition, 2008,41 (7) : 2337 - 2346. 被引量:1
  • 8Hu Qingmao, Hou Zujun, Wieslaw L N. Supervised range-constrained thresholding[ J ]. IEEE Transactions on Image Processing,2006, 15 (1) :228 - 240. 被引量:1
  • 9Rosin P L, Paul L. Unimodal thresholding[ J]. Pattem Recognition, 2001,34(11) :2083 - 2096. 被引量:1

二级参考文献8

共引文献149

同被引文献674

引证文献73

二级引证文献619

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部