期刊文献+

网络空间有用信息资源均衡调度仿真

Network Space Useful Information Resource Balanced Scheduling Simulation
下载PDF
导出
摘要 网格空间有用信息资源的均衡调度,能够有效提高网格空间中有用信息资源的利用率。对信息资源的均衡调度,需要提取滤波输出的资源信息流的关联维特征,设置资源调度的约束函数,完成有用信息资源的均衡调度。传统方法获取节点资源利用率,组建请求流量矩阵,但忽略了设置资源调度的约束函数,导致资源调度效果不理想。提出基于改进膜计算的网格空间中有用信息资源调度方法。利用膜计算方法构建网格空间中有用信息资源流的时间序列分析模型,对拟合的资源信息流进行滤波降噪预处理,提取滤波输出的资源信息流的关联维特征,设置资源调度的约束函数,将蚁群个体引入到膜计算中,给出资源与任务的最优匹配函数,利用上述方案完成对网格空间中有用信息资源调度。仿真证明,所提方法调度精度高,有效提升了有用信息资源的利用率。 A scheduling method for useful information resources in mesh space based on improved membrane computing is proposed. The membrane computing method is used to build time sequence analysis model of useful in- formation resource flow in mesh space, and pretreatment of filtration and noise reduction for fitting resource informa- tion flow are carried out ,then the correlation dimension feature of resource information flow of filter output is extrac- ted, and constraint function of resource scheduling is set up. Moreover, the individual of ant colony is introduced into membrane computing and the optimal matching function of resources and tasks is given. Thus, the useful information resource scheduling in mesh space is completed. Simulation result shows that the proposed method has high accuracy and can effectively improve the utilization of useful information resource.
作者 刘磊 LIU Lei(The City College of Jinlin Jianzhu University, Changehun Jinlin 130000, China)
出处 《计算机仿真》 北大核心 2017年第10期367-370,共4页 Computer Simulation
基金 吉林省教育厅十三五科学技术研究项目(2016526)
关键词 网格空间 有用信息 资源调度 Mesh space Useful information Resource scheduling
  • 相关文献

参考文献10

二级参考文献99

  • 1Anna Gorbenko,Vladimir Popov.Task-resource Scheduling Problem[J].International Journal of Automation and computing,2012,9(4):429-441. 被引量:1
  • 2刘文红,杨小亮,张宏科.带权快速Max-Min公平分配算法[J].北京交通大学学报,2006,30(2):33-35. 被引量:6
  • 3罗红兵,张晓霞,魏勇.大规模并行计算机作业调度评价[J].计算机工程与应用,2006,42(10):79-83. 被引量:3
  • 4BLASCHKE T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1): 2-16. 被引量:1
  • 5NYGREN E, SITARAMAN R K, SUN J. The Akamai network: a platform for high-performance Internet applications[J]. ACM SIGOPS Operating Systems Review, 2010, 44(3): 2-19. 被引量:1
  • 6LU Y, XIE Q, KLIOT G, et al. Join-Idle-Queue: a novel load balancing algorithm for dynamically scalable Web services[J]. Performance Evaluation, 2011, 68(11): 1056-1071. 被引量:1
  • 7GAWANDE D S, DHARMIK R C, PANSE C. A load balancing in grid environment[J]. International Journal of Engineering Research and Applications, 2012, 2(2): 445-450. 被引量:1
  • 8FILIPOVIC V. Fine-grained tournament selection operator in genetic algorithms[J]. Computing and Informatics, 2012, 22(2): 143-161. 被引量:1
  • 9VALDEZ F, MELIN P, CASTILLO O. An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms[J]. Applied Soft Computing, 2011, 11(2): 2625-2632. 被引量:1
  • 10COSSELL S, GUIVANT J. Concurrent dynamic programming for grid-based problems and its application for real-time path planning[J]. Robotics and Autonomous Systems, 2014, 62(6): 737-751. 被引量:1

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部