期刊文献+

基于蚁群算法的遥感影像传输资源调度方法 被引量:3

Transmission resource scheduling method for remote sensing images based on ant colony algorithm
下载PDF
导出
摘要 针对遥感影像数据量大,多用户并发请求造成服务器负载加重,使遥感影像传输效率逐渐降低的问题,提出一种在多线服务器环境下分块调度遥感影像资源的策略。该策略采用改进的蚁群优化(IACO)算法,通过引入一个线路等待因子γ动态选择当前最优的线路进行传输,从而提高传输效率。对IACO、ACO、Max-min、Min-min和Random算法进行了对比实验,IACO算法在客户端的任务完成时间和服务器端的执行时间与其他算法相比均是最少的,且随着任务数目的增加,效果更明显;同时IACO算法的线路资源的利用率也更高。仿真结果表明:多线服务器分块调度策略与改进蚁群算法相结合,使遥感影像传输速度和线路资源利用率均有一定提高。 A block resource scheduling strategy for remote sensing images in multi-line server environment was proposed with the problems of huge amount of remote sensing data, heavy server load caused by multi-user concurrent requests which decreased the transmission efficiency of remote sensing images. To improve the transmission efficiency, an Improved Ant Colony Optimization( IACO) algorithm was used, which introduced a line waiting factor γ to dynamically select the optimal transmission lines. Intercomparison experiments among IACO, Ant Colony Optimization( ACO), Max-min, Min-min, and Random algorithm were conducted and IACO algorithm finished the tasks in the client and executed in the server with the shortest time, and the larger the amount of tasks, the more obvious the effect. Besides, the line resource utilization of IACO was the highest. The simulation results show that: combining multi-line server block scheduling strategy with IACO algorithm can raise the speed of remote sensing image transmission and the utilization of line resource to some degree.
出处 《计算机应用》 CSCD 北大核心 2014年第11期3210-3213,共4页 journal of Computer Applications
基金 国家863计划项目(2012AA12A405) 国家自然科学基金资助项目(61172144)
关键词 遥感 资源调度 蚁群优化算法 多线服务器 资源利用率 remote sensing resource scheduling Ant Colony Optimization(ACO) algorithm multi-line server resource utilization
  • 相关文献

参考文献12

  • 1BLASCHKE T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1): 2-16. 被引量:1
  • 2NYGREN E, SITARAMAN R K, SUN J. The Akamai network: a platform for high-performance Internet applications[J]. ACM SIGOPS Operating Systems Review, 2010, 44(3): 2-19. 被引量:1
  • 3LU Y, XIE Q, KLIOT G, et al. Join-Idle-Queue: a novel load balancing algorithm for dynamically scalable Web services[J]. Performance Evaluation, 2011, 68(11): 1056-1071. 被引量:1
  • 4GAWANDE D S, DHARMIK R C, PANSE C. A load balancing in grid environment[J]. International Journal of Engineering Research and Applications, 2012, 2(2): 445-450. 被引量:1
  • 5FILIPOVIC V. Fine-grained tournament selection operator in genetic algorithms[J]. Computing and Informatics, 2012, 22(2): 143-161. 被引量:1
  • 6VALDEZ F, MELIN P, CASTILLO O. An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms[J]. Applied Soft Computing, 2011, 11(2): 2625-2632. 被引量:1
  • 7COSSELL S, GUIVANT J. Concurrent dynamic programming for grid-based problems and its application for real-time path planning[J]. Robotics and Autonomous Systems, 2014, 62(6): 737-751. 被引量:1
  • 8LEE Y C, ZOMAYA A Y. Energy efficient utilization of resources in cloud computing systems[J]. The Journal of Supercomputing, 2012, 60(2): 268-280. 被引量:1
  • 9Anna Gorbenko,Vladimir Popov.Task-resource Scheduling Problem[J].International Journal of Automation and computing,2012,9(4):429-441. 被引量:1
  • 10SHI L, CHEN H, SUN J, et al. vCUDA: GPU-accelerated high-performance computing in virtual machines[J]. IEEE Transactions on Computers, 2012, 61(6): 804-816. 被引量:1

二级参考文献14

  • 1Alan M. Frisch,Timothy J. Peugniez,Anthony J. Doggett,Peter W. Nightingale.Solving Non-Boolean Satisfiability Problems with Stochastic Local Search: A Comparison of Encodings[J].Journal of Automated Reasoning (-).2005(1-3) 被引量:1
  • 2J.E. Orosz,S.H. Jacobson.Analysis of Static Simulated Annealing Algorithms[J].Journal of Optimization Theory and Applications.2002(1) 被引量:1
  • 3Amazon Web Services LLC.SimpleDB. http://aws.amazon.ex1.ipv6.xjklmy.com/simpledb/ . 2011 被引量:1
  • 4Aggarwal M,Kent R D,Ngom A.Genetic Algorithm Based Scheduler fo Computational Grids[].the th Annual International Symposium on High Performance Computing Systems and Applications.2005 被引量:1
  • 5B.Ludascher,I.Altintas,C.Berkley,D.Higgins,E.Jaeger,M. Jones,E.A.Lee,J.Tao,Y.Zhao."Scientific workflow management and the Kepler system,"[].Concurrency and Computation: Practice and Experience.2006 被引量:1
  • 6Zhao C H,Zhang S S,Liu Q F, et al.Independent tasks scheduling based on genetic algorithm in cloud computing[].th International Conference on Wireless Communications Networking and Mobile Computing WiCOM.2009 被引量:1
  • 7K. Iwama,S. Miyazaki.SAR-variable Complexity of Hard Combinatorial Problems[].IFIP Transactions A: Computer Science and Technology.1994 被引量:1
  • 8F. Lardeux,F. Saubion,J.-K. Hao.GASAT: a genetic local search algorithm for the satisfiability problem[].Evol Comput.2006 被引量:1
  • 9Song S,Kwok Y,Hwang K.Security-Driven Heuristics and A Fast Genetic Algorithm for Trusted Grid Job Scheduling[].the th IEEE International Parallel and Distributed Processing Symposium.2005 被引量:1
  • 10Zhang L,Chen Y,Sun R,Jing S,Yang B.A Task Scheduling Algorithm Based on PSO for Grid Computing[].Inter national Journal of Computarional Inteligence Research.2008 被引量:1

同被引文献24

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部