期刊文献+

基于复杂网络理论的地铁运行干扰源分析 被引量:9

Analysis of metro operation disturbances based on complex network theory
下载PDF
导出
摘要 为了提升地铁系统的运行安全水平,以地铁运营事故和风险清单为基础,识别出26类地铁运行干扰源,通过事件链明确干扰源间的联系,构建地铁运行干扰源网络(MODN).然后,运用复杂网络理论(CNT),剖析地铁系统运行干扰源的特性,对MODN的拓扑特征进行研究.最后,基于目标免疫理论提出4种提升系统安全性的免疫策略,并对其免疫效果进行评估.研究结果表明:基于CNT对地铁运行干扰源的特性进行分析是可行的;MODN具有小世界特性和无标度特性,干扰源容易传播和扩散;地铁干扰源的免疫策略中选择性免疫策略的效果优于随机性免疫策略,而在选择性免疫策略中基于高介数和高度值的免疫策略效果最佳.地铁系统运行中应重点防范具有介数和度值高的干扰源. To enhance the safety level of metro operation,26 disruptive events are identified through the metro accidents and risk checklists. The interrelations among the disruptive events are clarified by the employing event chain,and the metro operation disturbance network( MODN) is established.Then,the complex network theory( CNT) is utilized to explore the characteristics of metro operation disturbances by revealing the topological properties of the MODN. Finally,four immunization strategies are put forward to enhance the system safety based on the target immunization theory,and the effects of these strategies are evaluated. The results indicate that it is feasible to study the nature of metro disturbances by the CNT. The MODN is a complex network with small-world property and scale-free property,in which the disturbances can spread easily. With regard to the immunization strategies,the immune effect of the selective immunization strategy is better than that of the random immunization strategy. Concerning the selective immunization strategies,the immune effect of the strategy based on degree and between centrality is better. The interference sources with high betweenness and high degree of interference should be emphasized during metro operation.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第5期1069-1073,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51578144) 教育部人文社会科学研究青年基金资助项目(17YJCZ035)
关键词 地铁运行安全 干扰源网络 复杂网络理论 拓扑特性 目标免疫理论 metro operation safety disturbance network complex network theory (CNT) topological property targeted immunization theory
  • 相关文献

参考文献4

二级参考文献29

  • 1靳丽丽.城市交通外部成本分析及内部化定量方法[J].交通科技与经济,2007,9(5):103-105. 被引量:6
  • 2Neil M,Fenton N,Forey S,et al.Using Bayesian belief networks to predict the reliability of military vehicles[J].Computing & Control Engineering Journal,2001,12(1):11-20. 被引量:1
  • 3Marsh W,Bearfield G.Using Bayesian networks to model accident causation in the UK railway industry[EB/OL].[2010-02-10].http://www.eecs.qmul.ac.uk/-william/PSAM7/accident_causation_PSAM7.pdf. 被引量:1
  • 4Norrington L,Quigley J,Russell A,et al.Modelling the reliability of search and rescue operations with Bayesian belief networks[J].Reliability Engineering and System Safety,2008,93(7):940-949. 被引量:1
  • 5Kim M C,Seong P H.An analytic model for situation assessment of nuclear power plant operators based on Bayesian inference[J].Reliability Engineering and System Safety,2006,91(13):270-282. 被引量:1
  • 6Luxhφj J T.Probabilistic causal analysis for system safety risk assessments in commercial air transport[C]//Proceedings of the Workshop on Investigating and Reporting of Incidents and Accidents.Williamsburg,VA,USA,2003:17-38. 被引量:1
  • 7Trucco P,Cagno E,Ruggeri F,et al.A Bayesian belief network modelling of organisational factors in risk analysis:a case study in maritime transportation[J].Reliability Engineering and System Safety,2008,93(6):845-856. 被引量:1
  • 8Federal Transit Administration.Transit safety & security statistics & analysis 2003 annual report (formerly SAMIS)[R].Washington DC,USA:United States Department of Transportation,2005. 被引量:1
  • 9Ren J,Jenkinson I,Wang J.An offshore risk analysis method using fuzzy Bayesian network[J].Journal of Offshore Mechanics and Arctic Engineering,2009,131(4):041101. 被引量:1
  • 10Wickens C D.Engineering psychology and human performance[M].2nd ed.New York:Harper Collins Publishers Inc,1992:211-257. 被引量:1

共引文献93

同被引文献100

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部