期刊文献+

基于差分进化的混合智能优化算法及其节能优化应用 被引量:2

Intelligent Optimization Algorithm and Application Based on Differential Evolution and Hybrid Clustering
下载PDF
导出
摘要 为了研究煤矿节能减排规划期内每年度间的动态多目标关联性,构建了基于自适应控制、差分进化算法与混合聚类算法的智能优化算法,应用自适应控制实时调整变异尺度因子、交叉概率常数的更新策略,得到差分进化算法的pareto解,进而应用混合聚类算法获取投资优化方案,为管理者投资决策提供有效依据。实验结果表明:在较少的迭代步数内,煤炭生产总量、能源消耗量、污染物排放量可以根据目标要求获得协调发展,且提供的投资决策依据切实有效。 To study the dynamic multi-objective correlation each year during the planning period on the coal mine energy saving and emission reduction, an intelligent optimization algorithm is proposed based on adaptive control, differential evolution algorithm and hybrid clustering algorithm,which used adaptive control to real-time adjust the mutation scaling factor and crossover probability constant to obtain the Pareto solution of differential evolution algorithm.Then, the hybrid clustering algorithm is used to obtain the investment optimization scheme, which provides an effective basis for managers to invest. The experimental results show that the total amount of coal production, energy consumption and pollutant emissions can be coordinated and developed according to the requirements of the target in a few iterations and the investment decision-making is effective.
作者 高立群
出处 《煤矿机械》 2017年第10期18-21,共4页 Coal Mine Machinery
关键词 差分进化 混合聚类 智能优化 自适应 多群体 决策 differential evolution hybrid clustering intelligent optimization adaptive multi group decision making
  • 相关文献

参考文献6

二级参考文献32

  • 1于雪峰,陈守煜.模糊聚类迭代模型在洪水灾害度划分中应用[J].大连理工大学学报,2005,45(1):128-131. 被引量:14
  • 2Handl J, Knowles J. An evolutionary approach to multiohjec- tire clustering [J]. IEEE Transactions on Evolutionary Com- putation, 2007, 11 (1): 56-76. 被引量:1
  • 3Saha S, Bandyopadhyay S. A symmetry based multiobjective clustering technique for automatic evolution of clusters [J]. Pattern Recognition, 2010, 43 (3): 738-751. 被引量:1
  • 4Qian Xiaoxue, Zhang Xianrong, Jiao Licheng, et al. Unsu- pervised texture image segmentation using multiobjective evolu- tionary clustering ensemble algorithm [C] //IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2008: 3561-3567. 被引量:1
  • 5Zhu Lin, Cao Longbing, Yang Jie. Multiobjective evolutionary algorithm-based soft subspace clustering [C] //IEEE Congress on Evolutionary Computation. NY, USA: IEEE, 2012. 被引量:1
  • 6Strehl A, Ghosh J. Cluster ensembles: A knowledge reuseframework for combining multiple partitions [J]. Journal of Machine Learning Research, 2008, 3 (3): 583-617. 被引量:1
  • 7Deb K, Pratap A, Agarwal S, et al. A fast and elitist mul- tiobjective genetic algorithm: NSGA-II [J]. IEEE Transac- tions on Evolutionary Computation, 2002, 6 (2) : 182-197. 被引量:1
  • 8University of CaliTomia, Irvine. UCI machine learning reposi- tory [EB/OL]. [2013-09- 20]. http://archive, ics. uci. edu/ ml/datasets, html. 被引量:1
  • 9孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1070
  • 10梁金钢,赵环帅,何建新.国内外选煤技术与装备现状及发展趋势[J].选煤技术,2008,36(1):60-64. 被引量:59

共引文献15

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部