期刊文献+

基于热点解和差分进化的多目标聚类集成算法 被引量:2

Multi-objective clustering ensemble algorithm based on knees solutions and differential evolution
下载PDF
导出
摘要 针对使用多目标聚类集成算法得到的聚类解集中包含大量质量较差解,影响后续集成操作的问题,提出一种基于热点解搜索和差分进化的多目标聚类集成算法。根据热点解的概念找出聚类解集中质量较好的解,以这些解引导种群的搜索方向,加强潜在最优区域的搜索;在后续集成操作中只采用热点解及其邻域个体,去除较差解对最终结果的影响。在优化过程中采用改进的差分进化算子提高全局寻优的能力,去除编码长度不一对算子使用的影响。对3组UCI数据的测试结果表明,该算法优于2种对比算法,其RI取值提高了0.0021~0.0524,FM取值提高了0.0134~0.0591。 The effect of ensemble operator in the multiobjective clustering ensemble algorithm is weakened by the bad solutions of the obtained solution set. A novel multi-objective clustering ensemble algorithm based on searching knees solutions and differential evolution was proposed to solve the problem. The promising solutions based on the notion of “knees” were found out and used to guide the search direction for enhancing the promising regions. During the ensemble operation process, only knees solutions and their neighbors were used so that the bad solutions did not influence the final results. An advanced differential evolution operator (DEO) was designed to improve the global searching ability and to solve the problem caused when using the DEO for varying codes. The test results show that the proposed algorithm works better than the other two algorithms, the RI values are improved 0. 0021 to 0. 0524, and the FM values are improved 0. 0134 to 0. 0591.
作者 李莉 李妍琰
出处 《计算机工程与设计》 CSCD 北大核心 2014年第8期2912-2916,共5页 Computer Engineering and Design
基金 国家青年基金项目(61301232) 河南省教育厅科学技术研究重点基金项目(13A520148)
关键词 多目标聚类 聚类集成 热点解 差分进化 全局寻优 multi-objective clustering clustering ensemble knees solution differential evolution global optimization
  • 相关文献

参考文献14

二级参考文献97

  • 1郑铎,吴世伟.正态分布函数计算的建议及其反函数的非迭代算法[J].河海大学学报(自然科学版),1993,21(2):61-64. 被引量:4
  • 2蒙文川,邱家驹.基于免疫算法的配电网重构[J].中国电机工程学报,2006,26(17):25-29. 被引量:84
  • 3林济铿,李鸿路,罗姗姗,郑卫洪.基于自适应免疫算法的电力系统无功优化[J].天津大学学报,2007,40(1):110-115. 被引量:7
  • 4Baran M E, Wu F F. Network reconfiguration in distribution systems for loss reduction and load balancing [J].IEEE Trans on Power Delivery, 1989,4(2): 1401-1407. 被引量:1
  • 5Civanlar S, Grainger J J, Yin H, et al. Distribution feeder reconfiguration for loss reduction[J]. IEEE Trans on Power Delivety, 1988,3 (3): 1217-1223. 被引量:1
  • 6Shirmohammadi D, Wayne Hong H. Reconfiguration of electric distribution networks for resistive line losses reduction[J].IEEE Trans on Power Delively, 1989,4 (2): 1492-1498. 被引量:1
  • 7Chang Hong-Chan Kuo Cheng-Chen. Network reconfiguration in distribution systems using simulated annealing[J]. Electric Power Systems Research, 1994, 29 ( 3 ) : 227-238. 被引量:1
  • 8Nara K, Shiose A, Kitaqawa M, et al. Implementation of genetic algorithm for distribution systems loss minimum re-configuration[J].IEEE Trans on Power Systems, 1992,7(3): 1044-1051. 被引量:1
  • 9Su Ching-Tzong, Lee Chu-Sheng. Network reconfiguration of distribution systems using improved mixed- integer hybrid differential evolution[J].IEEE Power Engineering Review, 2002,22 ( 12) : 1022-1027. 被引量:1
  • 10Zbigniew Michahwicz, Girish Nazhiyath. Genocop Ⅲ : A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints[C]// IEEE International Conference Evolutionary Computation. Perth, Australia, 1995 : 647-651. 被引量:1

共引文献16

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部