期刊文献+

满足最大值原理的熵格式计算线性传输方程 被引量:1

On Maximum-Principle-Satisfying Entropy Scheme for Linear Advection Equation
下载PDF
导出
摘要 茅德康等发展了熵格式计算一维双曲守恒型方程,熵格式具有超收敛性并且适合长时间计算.但是熵格式不满足最大值原理,在最值点处会出现过高或者过低现象.发展了满足最大值原理的熵格式并且对一维和二维线性传输方程进行了数值模拟,数值结果表明该格式在最值点不会出现过高过低现象而且不会发生非物理振荡. Mao Dekang et al developed an entropy scheme for computing one dimensional hyperbolic conservation equations,which has a super convergence property and is suitable for long time numerical computation.But the entropy scheme does not satisfy the maximum principle. Over-shooting or undershooting may occur in the vicinity of maximum or minimum points.In this work,numerical simulations of one dimensional and two dimensional linear advection equations are carried out.The numerical results show that the proposed scheme does not lead to over-shooting or under-shooting, moreover,nonphysical oscillations do not occur.
作者 陈荣三 苏蒙 邹敏 肖莉 CHEN Rongsan SU Meng ZOU Min XIAO Li(School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, Chin)
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第8期1243-1248,共6页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(11201436) 中央高校基本科研业务费专项资金
关键词 最大值原理 熵格式 线性传输方程 maximum principle entropy scheme linear advection equation
  • 相关文献

参考文献2

二级参考文献22

  • 1Fjordholm U S. Structure preserving finite volume methods for the shallow water equations[D]. Master Thesis. Norway: University of Oslo, 2009. 被引量:1
  • 2Arakawa A, Lamb V R. Computational design of the basic dynamical process of the UCLA general circulation mode[J]. Methods in Computational Physics, 1977, 17: 173-265. 被引量:1
  • 3LeVeque RJ. Balancing source terms and flux gradients in high-resolution Godunov met?hods: the quasi-steady wave-propagation algorithm[J].Journal of Computational Physics, 1998, 146( I): 346-365. 被引量:1
  • 4Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws I[J]. Mathematics of Computation, 1987, 49( 179) : 91-103. 被引量:1
  • 5Tadmor E. Entropy stability theory for difference approximation of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica, 2003, 12: 451-512. 被引量:1
  • 6Tadmor E, Zhong W. Entropy stable approximations of Navier-Stokes equations with no artifi?cial numerical viscosity[J].Journal of Hyperbolic Differential Equations, 2006, 3( 3) : 529- 559. 被引量:1
  • 7Tadmor E, Zhong W. Energy preserving and stable approximations for the two-dimensional shallow water equations[C] I IMunthe- Kaas H, Owren B, eds. Mathematics and Computa?tion, a Contemporary View: The Abel Symposium 2006. The 3rd Abel Symposia. Alesund, Norway. Berlin: Springer, 2008: 67-94. 被引量:1
  • 8Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions II: entropy production at shocks[J].Journal of Computational Physics, 2009, 228( 15) : 5410-5436. 被引量:1
  • 9Mohanuned AN, Ismail F. Study of an entropy-consistent Navier-Stokes flux[J]. Internation- alJournal of Computational Fluid Dynamics, 2013, 27( 1): 1-14. 被引量:1
  • 10Fjordholm U, Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shal?low water equations[C] I I Cucker F, Pinkus A, Todd MJ, eds. Foundations of Computation?al Mathematics, Hong Kong 2008. London Mathematical Society Lecture Note Series (363). London: Cambridge University Press, 2009: 93-139. 被引量:1

共引文献5

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部