期刊文献+

求解浅水波方程的熵相容格式 被引量:5

An Entropy-Consistent Flux Scheme for Shallow Water Equations
下载PDF
导出
摘要 提出了一种求解浅水波方程组的熵相容格式.在熵稳定通量中添加特征速度差分绝对值的项来抵消解在跨过激波时所产生的熵增,从而实现熵相容.新的数值差分格式具有形式简单、计算效率高、无需添加任何的人工数值粘性的特点.数值算例充分说明了其显著的优点.利用新格式成功地模拟了不同类型溃坝问题的激波、稀疏波传播及溃坝两侧旋涡的形成,是求解浅水波方程组较为理想的方法. An entropy-consistent flux scheme was developed for the shallow water equations. To offset the entropy increase with cubic order of the shock strength across shock waves, the term of absolute value of the characteristic velocity difference was added into the entropy stable flux, so as to achieve entropy consistency. The new numerical difference scheme featured ex- treme simplicity, high efficiency, and none additional artificial numerical viscous terms. Numer- ical experiments of the proposed scheme adequately demonstrated these advantages. The new scheme successfully simulates both the circular shock water wave propagations and the vortices formed on both sides of the breach in different kinds of dam break problems, thus makes a bet- ter method to solve the shallow water equations.
机构地区 长安大学理学院
出处 《应用数学和力学》 CSCD 北大核心 2013年第12期1247-1257,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(11171043) 中央高校基本科研业务费资助项目(CHD2102TD015)~~
关键词 数值模拟 浅水波方程组 熵相容格式 numerical simulation shallow water equations entropy-consistent scheme
  • 相关文献

参考文献13

  • 1Fjordholm U S. Structure preserving finite volume methods for the shallow water equations[D]. Master Thesis. Norway: University of Oslo, 2009. 被引量:1
  • 2Arakawa A, Lamb V R. Computational design of the basic dynamical process of the UCLA general circulation mode[J]. Methods in Computational Physics, 1977, 17: 173-265. 被引量:1
  • 3LeVeque RJ. Balancing source terms and flux gradients in high-resolution Godunov met?hods: the quasi-steady wave-propagation algorithm[J].Journal of Computational Physics, 1998, 146( I): 346-365. 被引量:1
  • 4Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws I[J]. Mathematics of Computation, 1987, 49( 179) : 91-103. 被引量:1
  • 5Tadmor E. Entropy stability theory for difference approximation of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica, 2003, 12: 451-512. 被引量:1
  • 6Tadmor E, Zhong W. Entropy stable approximations of Navier-Stokes equations with no artifi?cial numerical viscosity[J].Journal of Hyperbolic Differential Equations, 2006, 3( 3) : 529- 559. 被引量:1
  • 7Tadmor E, Zhong W. Energy preserving and stable approximations for the two-dimensional shallow water equations[C] I IMunthe- Kaas H, Owren B, eds. Mathematics and Computa?tion, a Contemporary View: The Abel Symposium 2006. The 3rd Abel Symposia. Alesund, Norway. Berlin: Springer, 2008: 67-94. 被引量:1
  • 8Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions II: entropy production at shocks[J].Journal of Computational Physics, 2009, 228( 15) : 5410-5436. 被引量:1
  • 9Mohanuned AN, Ismail F. Study of an entropy-consistent Navier-Stokes flux[J]. Internation- alJournal of Computational Fluid Dynamics, 2013, 27( 1): 1-14. 被引量:1
  • 10Fjordholm U, Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shal?low water equations[C] I I Cucker F, Pinkus A, Todd MJ, eds. Foundations of Computation?al Mathematics, Hong Kong 2008. London Mathematical Society Lecture Note Series (363). London: Cambridge University Press, 2009: 93-139. 被引量:1

同被引文献12

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部