摘要
提出了一种求解浅水波方程组的熵相容格式.在熵稳定通量中添加特征速度差分绝对值的项来抵消解在跨过激波时所产生的熵增,从而实现熵相容.新的数值差分格式具有形式简单、计算效率高、无需添加任何的人工数值粘性的特点.数值算例充分说明了其显著的优点.利用新格式成功地模拟了不同类型溃坝问题的激波、稀疏波传播及溃坝两侧旋涡的形成,是求解浅水波方程组较为理想的方法.
An entropy-consistent flux scheme was developed for the shallow water equations. To offset the entropy increase with cubic order of the shock strength across shock waves, the term of absolute value of the characteristic velocity difference was added into the entropy stable flux, so as to achieve entropy consistency. The new numerical difference scheme featured ex- treme simplicity, high efficiency, and none additional artificial numerical viscous terms. Numer- ical experiments of the proposed scheme adequately demonstrated these advantages. The new scheme successfully simulates both the circular shock water wave propagations and the vortices formed on both sides of the breach in different kinds of dam break problems, thus makes a bet- ter method to solve the shallow water equations.
出处
《应用数学和力学》
CSCD
北大核心
2013年第12期1247-1257,共11页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(11171043)
中央高校基本科研业务费资助项目(CHD2102TD015)~~
关键词
数值模拟
浅水波方程组
熵相容格式
numerical simulation
shallow water equations
entropy-consistent scheme