摘要
通过Painlevé截断展开得到(1+1)维经典Boussinesq-Burgers系统的留数对称,引入新的变量,延拓系统把留数对称局域到李点对称,获得该系统的有限变换。利用延拓系统,获得n次Bcklund变换和多孤子解。
The non-local residual symmetries related to truncated Painleve expansion of Boussinesq-Burgers system are obtained. In order to localize the residual symmetries, we introduce new variables to prolong the original Boussinesq-Burgers to a new system. We obtain the finite transformation for the localized residual symmetry. Via prolonged system n-th Backlund transformation and multiple soliton solutions are derived.
作者
曹伟平
费金喜
李冀英
CAO Weiping FEI Jinxil LI Jiying(Faculty of Engineering, Lishui University, Lishui 323000, Zhejiang The Affiliated Senior High School of Lishui University, Lishui 323000, Zhejiang)
出处
《丽水学院学报》
2017年第5期8-15,共8页
Journal of Lishui University
基金
浙江省自然科学基金资助项目"带电粒子对受限高分子链输运性质的影响"(LQ14A040001)