期刊文献+

(1+1)维经典Boussinesq-Burgers系统的留数对称和多孤子解 被引量:3

Residual Symmetries and Multiple Soliton Solutions to (1+1) Dimensional Classical Boussinesq-Burgers System
下载PDF
导出
摘要 通过Painlevé截断展开得到(1+1)维经典Boussinesq-Burgers系统的留数对称,引入新的变量,延拓系统把留数对称局域到李点对称,获得该系统的有限变换。利用延拓系统,获得n次Bcklund变换和多孤子解。 The non-local residual symmetries related to truncated Painleve expansion of Boussinesq-Burgers system are obtained. In order to localize the residual symmetries, we introduce new variables to prolong the original Boussinesq-Burgers to a new system. We obtain the finite transformation for the localized residual symmetry. Via prolonged system n-th Backlund transformation and multiple soliton solutions are derived.
作者 曹伟平 费金喜 李冀英 CAO Weiping FEI Jinxil LI Jiying(Faculty of Engineering, Lishui University, Lishui 323000, Zhejiang The Affiliated Senior High School of Lishui University, Lishui 323000, Zhejiang)
出处 《丽水学院学报》 2017年第5期8-15,共8页 Journal of Lishui University
基金 浙江省自然科学基金资助项目"带电粒子对受限高分子链输运性质的影响"(LQ14A040001)
关键词 Boussinesq-Burgers系统 留数对称 B cklund变换 多孤子解 Boussinesq-Burgers system Residual symmetry Biicklund transformation multiple soliton solution
  • 相关文献

参考文献3

二级参考文献61

  • 1E. Date, Prog. Theor. Phys. 59 (1978) 265. 被引量:1
  • 2X.G. Geng, J. Math. Phys. 40 (1999) 2971. 被引量:1
  • 3Y. Li, W.X. Ma, and J.E. Zhang. Phys. Lett. A 275 (2000) 60. 被引量:1
  • 4M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981). 被引量:1
  • 5S.P, Novikov, S.V. Manakov, L.P. Pitaevskii, and V.E. Zakharov, Theory of Solitons, the Inverse Scattering Methods, Consultants Bureau, New York (1984). 被引量:1
  • 6M. Wadati, K. Konno, and Y.H. Ichikawa, J. Phys. Soc. Jpn. 46 (1979) 1965. 被引量:1
  • 7C.H. Gu, H.S. Hu, and Z.X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Scientific and Technical Publishers, Shanghai (1999). 被引量:1
  • 8V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin (1991). 被引量:1
  • 9G. Neugebauer and D. Kramer, J. Phys. A 16 (1983) 1927. 被引量:1
  • 10G. Neugebauer and R. Meinel, Phys. Lett. A 100 (1984) 467. 被引量:1

共引文献9

同被引文献24

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部