期刊文献+

广义KdV方程的对称约化和级数解 被引量:1

The symmetry and Series Solutions for the extended KdV equation
下载PDF
导出
摘要 在非线性科学中,很多问题通过非线性发展方程来描述,那么求出其精确解显得尤为重要。文中基于李对称理论分析了广义Kd V方程,研究精确解的求解。首先获得有限维李对称,结合向量场的伴随表示构造了优化系统,其次基于对称约化,得到了包含行波解和级数解在内的精确解。 In nonlinear science,many problems described by the nonlinear evolution equations. It is particu-larly important to find out the exact solutions. In this paper,the Lie symmetry analysis is performed for the ex-tended KdV equation. By taking the Lie group method,the optimal system and the exact solutions from the symmetry transformations are provided. Such exact explicit solutions are important in both applications and the theory of nonlinear science.
作者 王清
出处 《华北科技学院学报》 2014年第10期103-105,121,共4页 Journal of North China Institute of Science and Technology
基金 中央高校基本科研资助资金(3142012020 3142013027 3142014037) 华北科技学院校级重点学科资助(HKXJZD201402)
关键词 李对称 行波解 级数解 Lie symmetry traveling wave solution series solutions
  • 相关文献

参考文献11

  • 1孙海珍,刘亚峰.与广义KdV方程族相关的谱问题及其完全可积性[J].石家庄铁道大学学报(自然科学版),2013,26(1):106-110. 被引量:1
  • 2Dong Zhouzhou, Chen Yong, Kong Dexing, Wang Zenggui. symmetry reduction and exact solutions of a Hyperbolic Monge -Ampere Equation. Chinese Annals of Mathematics, Series B, 2012, 33B(2) :309 -316. 被引量:1
  • 3M. Craddock. Fundamental solutions, transition densities and the integration of Lie symmetries [ J ]. Journal of Differential Equa- tions, 2009, 246(6) :2538 - 2560. 被引量:1
  • 4C. S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura. Method for solving the Korteweg - de Vries equation. Physical Review Letters, 1967, 19 : 1095 - 1097. 被引量:1
  • 5Peter, J. Olver. Application of Lie Groups to Differential Equa- tions. New York: Springer- Verlag, 1986. 被引量:1
  • 6谷超豪等著..孤立子理论与应用[M].杭州:浙江科学技术出版社,1990:475.
  • 7和玲超,庞晶,赵忠龙.应用Bernoulli型简单方程求(2+1)维KP方程的精确行波解[J].湖南师范大学自然科学学报,2014,37(4):82-86. 被引量:4
  • 8Gu Zhuquan. The Neumann system for the 3rd - order eigenvalue problems related to the Boussinesq equation[ J]. IL NUOVO CI- MENTO, 2002, 117(6) :615 -632. 被引量:1
  • 9R. Hirota, J. Satsuma. A variety of nonlinear network equations generated from the Backlund transformation for the Tota lattice. Progress of Theoretical Physics, 1976, 59 : 64 - 100. 被引量:1
  • 10Geng Xianguo, Wu Lihua. Darboux Transformation and Explicit Solutions for Drinfellt - Sokolov - Wilson equation. Communica- tions in Theoretical Physics, 2010, 6 : 1090 - 1096. 被引量:1

二级参考文献21

  • 1V.G. Drinfeld and V.V. Sokolov, Sov. Math. Dokl. 23 (1981) 457. 被引量:1
  • 2G. Wilson, Phys. Lett. A 89 (1982) 332. 被引量:1
  • 3V.B. Matveev and M.A. Salle, Darboux Transformation and Solitons, Springer, Berlin (1991). 被引量:1
  • 4D. Levi, Inverse Problems 4 (1988) 165. 被引量:1
  • 5C.H. Gu and Z.X. Zhou, Lett. Math. Phys. 32 (1994) 1. 被引量:1
  • 6M. Jimbo and T. Miwa, Publ. RIMS, Kyoto Univ. 19 (1983) 943. 被引量:1
  • 7R. Hirota, B. Grammaticos, and A. Ramani, J. Math. Phys. 27 (1986) 1499. 被引量:1
  • 8E.G. Fan, J. Phys. A: Math. Gen. 36 (2003) 7009. 被引量:1
  • 9Y.Q. Yao, Chaos, Solitons and Fractals 24 (2005) 301. 被引量:1
  • 10M. Inc, Appl. Math. Comput. 172 (2006) 421. 被引量:1

共引文献6

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部