期刊文献+

CLASSIFICATION OF POSITIVE SOLUTIONS TO ASYSTEM OF HARDY-SOBOLEV TYPE EQUATIONS 被引量:1

CLASSIFICATION OF POSITIVE SOLUTIONS TO A SYSTEM OF HARDY-SOBOLEV TYPE EQUATIONS
下载PDF
导出
摘要 In this paper, we are concerned with the following Hardy-Sobolev type system{(-?)^(α/2) u(x) =v^q(x)/|y|^(t_2) (-?)α/2 v(x) =u^p(x)/|y|^(t_1),x =(y, z) ∈(R ~k\{0}) × R^(n-k),(0.1)where 0 < α < n, 0 < t_1, t_2 < min{α, k}, and 1 < p ≤ τ_1 :=(n+α-2t_1)/( n-α), 1 < q ≤ τ_2 :=(n+α-2 t_2)/( n-α).We first establish the equivalence of classical and weak solutions between PDE system(0.1)and the following integral equations(IE) system{u(x) =∫_( R^n) G_α(x, ξ)v^q(ξ)/|η|t^2 dξ v(x) =∫_(R^n) G_α(x, ξ)(u^p(ξ))/|η|^(t_1) dξ,(0.2)where Gα(x, ξ) =(c n,α)/(|x-ξ|^(n-α))is the Green's function of(-?)^(α/2) in R^n. Then, by the method of moving planes in the integral forms, in the critical case p = τ_1 and q = τ_2, we prove that each pair of nonnegative solutions(u, v) of(0.1) is radially symmetric and monotone decreasing about the origin in R^k and some point z0 in R^(n-k). In the subcritical case (n-t_1)/(p+1)+(n-t_2)/(q+1)> n-α,1 < p ≤ τ_1 and 1 < q ≤ τ_2, we derive the nonexistence of nontrivial nonnegative solutions for(0.1). In this paper, we are concerned with the following Hardy-Sobolev type system{(-?)^(α/2) u(x) =v^q(x)/|y|^(t_2) (-?)α/2 v(x) =u^p(x)/|y|^(t_1),x =(y, z) ∈(R ~k\{0}) × R^(n-k),(0.1)where 0 < α < n, 0 < t_1, t_2 < min{α, k}, and 1 < p ≤ τ_1 :=(n+α-2t_1)/( n-α), 1 < q ≤ τ_2 :=(n+α-2 t_2)/( n-α).We first establish the equivalence of classical and weak solutions between PDE system(0.1)and the following integral equations(IE) system{u(x) =∫_( R^n) G_α(x, ξ)v^q(ξ)/|η|t^2 dξ v(x) =∫_(R^n) G_α(x, ξ)(u^p(ξ))/|η|^(t_1) dξ,(0.2)where Gα(x, ξ) =(c n,α)/(|x-ξ|^(n-α))is the Green's function of(-?)^(α/2) in R^n. Then, by the method of moving planes in the integral forms, in the critical case p = τ_1 and q = τ_2, we prove that each pair of nonnegative solutions(u, v) of(0.1) is radially symmetric and monotone decreasing about the origin in R^k and some point z0 in R^(n-k). In the subcritical case (n-t_1)/(p+1)+(n-t_2)/(q+1)> n-α,1 < p ≤ τ_1 and 1 < q ≤ τ_2, we derive the nonexistence of nontrivial nonnegative solutions for(0.1).
作者 戴蔚 刘招
出处 《Acta Mathematica Scientia》 SCIE CSCD 2017年第5期1415-1436,共22页 数学物理学报(B辑英文版)
基金 supported by the NNSF of China(11371056) partly supported by the NNSF of China(11501021) the China Postdoctoral Science Foundation(2013M540057) partly supported by Scientific Research Fund of Jiangxi Provincial Education Department(GJJ160797)
关键词 Hardy-Sobolev type systems systems of fractional Laplacian systems of integral equations method of moving planes in integral forms radial symmetry NONEXISTENCE Hardy-Sobolev type systems systems of fractional Laplacian systems of integral equations method of moving planes in integral forms radial symmetry nonexistence
  • 相关文献

参考文献2

二级参考文献45

  • 1邓东皋,颜立新.Fractional integration associated with second order divergence operators on R^n[J].Science China Mathematics,2003,46(3):355-363. 被引量:3
  • 2Bourgain J. Global Solutions of Nonlinear Schrodinger Equations. AMS Colloquium Publications, Vol 46. Providence, Rhode Island: AMS, 1999. 被引量:1
  • 3Caffarelli L, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun Pure Appl Math, 1989, 42:271-297. 被引量:1
  • 4Chen W, Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math J, 1991, 63: 615-622. 被引量:1
  • 5Chen W, Li C. Regularity of solutions for a system of integral equations. Commun Pure Appl Anal, 2005, 4:18. 被引量:1
  • 6Chen W, Li C. The best constant in weighted Hardy-Littlewood-Sobolev inequality. Proc AMS, 208, 136(3): 955-962. 被引量:1
  • 7Chen W, Li C, Ou B. Classification of solutions for an integral equation. Commun Pure Appl Math, 2006, 59:330-343. 被引量:1
  • 8Chen W, Li C, Ou B. Classification of solutions for a system of integral equations. Commun Partial Differ Equ, 2005, 30:59-65. 被引量:1
  • 9Chen W, Li C, Ou B. Qualitative properties of solutions for an integral equation. Disc & Cont Dynamics Sys, 2005, 12:347-354. 被引量:1
  • 10de Figueiredo D G, Felmer P L. On superquadratic elliptic systems. Trans Amer Math Soc, 1994, 343: 99-116. 被引量:1

共引文献14

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部