期刊文献+

图的半强积的邻点可区别染色 被引量:1

Adjacent vertex-distinguishing colorings of the semistrong product of graphs
下载PDF
导出
摘要 两个简单图G与H的半强积G·H是具有顶点集V(G)×V(H)的简单图,其中两个顶点(u,v)与(u',v')相邻当且仅当u=u'且vv'∈E(H),或uu'∈E(G)且vv'∈E(H).图的邻点可区别边(全)染色是指相邻点具有不同色集的正常边(全)染色.统称图的邻点可区别边染色与邻点可区别全染色为图的邻点可区别染色.图G的邻点可区别染色所需的最少的颜色数称为邻点可区别染色数,并记为X_a^((r))(G),其中r=1,2,且X_a^((1))(G)与X_a^((2))(G)分别表示G的邻点可区别的边色数与全色数.给出了两个简单图的半强积的邻点可区别染色数的一个上界,并证明了该上界是可达的.然后,讨论了两个树的不同半强积具有相同邻点可区别染色数的充分必要条件.另外,确定了一类图与完全图的半强积的邻点可区别染色数的精确值. The semistrong product of simple graphs G and H is the simple graph G*H with vertex set V(G) × V(H), in which (u, v) is adjacent to (u ', v') if and only if either u = u' and vv' ∈ E(H) or uu' ∈ E(G) and vv' ∈ E(H). An adjacent vertex distinguishing edge (total) coloring of a graph is a proper edge (total) coloring of the graph such that no pair of adjacent vertices meets the same set of colors. The adjacent vertex distinguishing edge coloring and adjacent vertex distinguishing total coloring of a graph are collectively called the adjacent vertex distinguishing coloring of the graph. The minimum number of colors required for an adjacent vertex distinguishing coloring of G is called the adjacent vertex distinguishing chromatic number of G, and denoted by Xa(t)(G), where T= 1, 2, Xa(1) (G) and Xa(2) (G) denote the adjacent vertex distinguishing edge chromatic number and adjacent vertex distinguishing total chromatic number, respectively. An upper bound for these parameters of the semistrong product of two simple graphs G and H is given in this paper, and it is proved that the upper bound is attained precisely. Then the necessary and sufficient conditions is discussed which the two different semistrong product of two trees have the same the value of these parameters. Furthermore, the exact value of these parameters for the semistrong product of a class graphs and complete graphs are determined.
作者 田双亮 董新芳 刘睿琳 TIAN Shuangliang1 DONG Xinfang1 LIU Ruilin1
出处 《运筹学学报》 CSCD 北大核心 2017年第3期119-125,共7页 Operations Research Transactions
基金 国家民委科研资助项目(No.14XBZ018) 西北民族大学科研创新团队计划资助(No.120-112033)
关键词 半强积 完全图 邻点可区别染色 邻点可区别染色数 semistrong product, tree, complete graph, adjacent vertex-distinguishing coloring, adjacent vertex-distinguishing chromatic number
  • 相关文献

参考文献4

二级参考文献20

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 3陈祥恩,张忠辅.Adjacent-Vertex-Distinguishing Total Chromatic Number of P_m×K_n[J].Journal of Mathematical Research and Exposition,2006,26(3):489-494. 被引量:16
  • 4张忠辅 陈祥恩 李敬文 等.关于图的邻点可区别全染色.中国科学:A辑,2005,48(3):289-299. 被引量:2
  • 5BONDY J A, MURTY U S R. Graph Theory with Applications [M]. New York: American Elsevier, 1976. 被引量:1
  • 6YAP H P. Total Colourings of Graphs [M]. New York: Springer-Verlag, 1996. 被引量:1
  • 7ZHANG Zhong-fu, LIU Lin-zhong, WANG Jian-fang. Adjacent strong edge coloring of graphs [J]. Appl. Math. Left., 2002, 15(5): 623-626. 被引量:1
  • 8Bondy J A, Murty U S R. Graph Theory and Its Application. Berlin: Academic Press, 1976. 被引量:1
  • 9Munarini E, Perelli Cippo C, Scagliola A, Salvi N Z. Double Graphs. Discrete Math. 2008, 308: 242-254. 被引量:1
  • 10田双亮,陈萍.两类积图的邻点可区别全染色[J].Journal of Mathematical Research and Exposition,2007,27(4):733-737. 被引量:6

共引文献19

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部