期刊文献+

基于联合矩阵分解的动态异质网络社区发现方法 被引量:5

Community detection in dynamic heterogeneous network with joint nonnegative matrix factorization
下载PDF
导出
摘要 动态网络的社区发现是目前复杂网络分析领域的重要研究内容,然而现有动态网络社区发现方法主要针对同质网络,当网络包含多种异质信息时,现有方法不再适用。针对这个问题,提出了一种基于联合矩阵分解的动态异质网络社区发现方法。首先计算动态异质网络中各个快照图的拓扑相似度矩阵和多关系相似度矩阵;其次利用时序联合非负矩阵分解方法,约束各个时刻快照图的社区划分;最后在真实网络数据集上与K-means、Meta Fac算法进行比较实验,提出算法能够充分利用网络的异质信息与拓扑信息,异质网络社区划分精度优于Meta Fac算法,且划分效果更稳定。结果表明,基于联合矩阵分解的动态异质网络社区发现算法可以有效检测出动态异质网络中潜在的社区结构。 Dynamic community detection is an important research field of complex network analysis. However, with the rapid development of social networks, the structure of networks becomes more and more complex. Traditional community detection methods in homogeneous networks can hardly adapt with the demand of heterogeneous networks. In order to deal with this problem, this paper proposed a joint non-negative matrix factorization algorithm for dynamic heterogeneous networks. Firstly, the algorithm calculated the topology similarity and multi-relational similarity in each snapshot. Then it combined the historical information and current information with joint non-negative matrix factorization algorithm to detect communities from dynamic heterogeneous networks. Finally it took comparative experiment on real Web datasets with K-means and MetaFac algorithms. The proposed algorithm took full advantage of heterogeneous information and network topology information, and could get more accuracy and robust than MetaFac algorithm in heterogeneous network community division. The result of experiments demonstrates that the proposed algorithm can detect community in dynamic heterogeneous network effectively.
出处 《计算机应用研究》 CSCD 北大核心 2017年第10期2989-2992,共4页 Application Research of Computers
基金 国家科技支撑计划资助项目(2014BAH30B01) 国家自然科学基金创新群体资助项目(61521003) 国家自然科学基金资助项目(61379151)
关键词 异质网络 动态网络 社区发现 非负矩阵分解 heterogeneous network dynamic network community detection nonnegative matrix factorization
  • 相关文献

参考文献1

二级参考文献24

  • 1O' Madadhain J, Hutchins J, Smyth P. Prediction and ranking algorithms for event-based network data. ACM SIGKDD Explorations Newsletter, 2005, 7(2): 23-30. 被引量:1
  • 2Taskar B, Wong M F, Abbeel P, Koller D. Link prediction in relational data//Proceedings of the Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2003. 被引量:1
  • 3Li L, Zhou T. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 2011, 390(6).. 1150-1170. 被引量:1
  • 4Liben Nowell D, Kleinberg J. The link prediction problem for social networks/Proceedings of the lgth International Conference on Information and Knowledge Management. New Orleans, Louisiana, USA, 2003= 556-559. 被引量:1
  • 5A1 Hasan M, Chaoji V, Salem S, et al. IAnk prediction using supervised learning//Proeeedings of the SDM'06 Workshop on Link Analysis, Counterterrorism and Security. Seoul, Korea, 2006. 被引量:1
  • 6Clauset A, Moore C, Newman M E J. Hierarchical structure and the prediction of missing links in networks. Nature, 2008, 453(7191).. 98 101. 被引量:1
  • 7Leroy V, Cambazoglu B B, Bonchi F. Cold start link prediction //Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2010:393-402. 被引量:1
  • 8Lichtenwalter R N, Lussier J T, Chawla N V. New perspec- tives and methods in link prediction//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2010: 243-252. 被引量:1
  • 9Yang Y, Chawla N, Sun Y, Hart J. Predicting iinks in multi- relational and heterogeneous networks//Proceedings of the 2012 IEEE 12th International Conference on Data Mining. Brussels, Belgium, 2012:755 764. 被引量:1
  • 10Liehtenwalter R N, Chawla N V. Vertex collocation profiles Subgraph counting for link analysis and prediction// Proceedings of the 21st International Conference on World Wide Web. Lyon, France, 2012 1019-1028. 被引量:1

共引文献34

同被引文献49

引证文献5

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部