期刊文献+

一种融合多维信息的移动社区发现方法

A Method for Mobile Community Detection Based on Multi-dimensional Informational Fusion
下载PDF
导出
摘要 为解决传统社区发现算法难适用于大型复杂异质的移动网络的问题,利用移动网络使用详单数据(Usage Detail Record,UDR)和移动用户社交数据构建网络模型,提出一种融合多维信息的移动社区发现方法BNMF-NF。该方法综合考虑用户社交关系和时空行为,给出用户社交相似度、位置分布相似度和主题偏好相似度,利用加权网络融合方法融合多维相似关系构建用户相似网络,并运用有界非负矩阵分解技术实现社区结构的检测。在Foursquare和电信数据集上的实验结果表明,BNMF-NF方法能够有效发现移动网络中用户社区结构。 To address the issue that the traditional community detection algorithm is difficult to apply to large-scale complex heterogeneous mobile networks,a mobile network model is constructed using mobile network usage detail record(UDR)and users’social relationship data,and a method for mobile community detection based on multi-dimensional informational fusion is proposed,called BNMF-NF.Firstly,the paper comprehensively considers the user’s social relationship and spatiotemporal behavior,and gives the user’s social similarity,spatiotemporal distribution similarity and topic preference similarity.Then,the weighted network fusion method is used to fuse multi-dimensional similarity relations to construct a user similarity network.Finally,the community structure of the mobile network is detected by the use of the bounded non-negative matrix factorization.Experimental results on Foursquare and telecom data sets show that the method can effectively detect the community structure in the mobile network.
作者 舒鹏 杜庆伟 SHU Peng;DU Qing-wei(College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
出处 《计算机与现代化》 2021年第5期88-92,126,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(61802181,61701231)。
关键词 社区发现 移动网络 用户相似度 相似网络融合 非负矩阵分解 community detection mobile network user similarity similarity network fusion non-negative matrix factorization
  • 相关文献

参考文献6

二级参考文献81

  • 1解(亻刍),汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12. 被引量:86
  • 2刘杰,陆君安.一个小型科研合作复杂网络及其分析[J].复杂系统与复杂性科学,2004,1(3):56-61. 被引量:56
  • 3Girvan M, Newman M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826. 被引量:1
  • 4Newman M E, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113. 被引量:1
  • 5Newman M E. The structure and function of complex net- works[J]. SIAM Review, 2003, 45(2): 167-256. 被引量:1
  • 6Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(2): 298-305. 被引量:1
  • 7Pothen A, Simon H D, Liou K P. Partitioning sparse matrices with eigenvectors of graphs[J]. SIAM Journal on Matrix Analysis and Applications, 1990, 11(3): 430-452. 被引量:1
  • 8Shiga M, Takigawa I, Mamitsuka H. A spectral clustering approach to optimally combining numerical vectors with a modular network[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Joze, USA, Aug 12-15, 2007. New York, USA: ACM, 2007: 647-656. 被引量:1
  • 9Aldecoa, R, Marin I. Surprise maximization reveals the com- munity structure of complex networks[J]. Scientific Reports, 2013, 3: 1060. 被引量:1
  • 10Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): P10008. 被引量:1

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部