期刊文献+

一种应用于欠采样图像的自适应稀疏重建方法 被引量:2

An Adaptive Sparse Reconstruction Method for Undersampling Images
下载PDF
导出
摘要 针对图像稀疏重建中因使用固定参数的全变分(TV)正则项所带来的图像细节缺失和阶梯效应问题,提出了一种自适应二阶广义全变分(TGV)约束的图像稀疏重建算法。该算法采用二阶广义全变分模型权衡图像的一阶导数和二阶导数,且能够根据每次迭代得到的重构解及对应张量函数自适应地修正权重系数,实现图像的稀疏重建。与全变分正则模型和固定参数广义全变分正则模型相比,该算法能更好地保持图像轮廓和细节信息,提高重建图像的峰值信噪比(PSNR)和结构相似度(SSIM)。 Consideiing the image detail loss and staircase effect problems caused by the fixed parameters of total variation(TV ) regularization constraints in image spare reconstruction, this paper proposes an adaptive sparse image reconstruction algorithm by using second-order total generalized variation( TGV) model as the regularization constraints. The second-order TGV model is applied to balance the first and second derivative in images,and it can automatically modify the weights on the basis of each iteration solution and tensor func-tion to achieve image sparse reconstruction. Simulation results show that compared with the TV model and fixed TGV model,this algorithm can maintain both image detail information and image outline, as well as im-proving peak signal-to-noise ratio(PSNR) and structure similarity( SSIM) of the reconstructed image.
作者 管春 陶勃宇
出处 《电讯技术》 北大核心 2017年第9期981-985,共5页 Telecommunication Engineering
关键词 图像处理 稀疏重建 压缩感知 广义全变分 自适应正则约束 分裂Bregman算法 image processing sparse reconstruction compressed sensing total generalized variation adap-tive regularization term split Bregman algorith
  • 相关文献

参考文献2

二级参考文献17

  • 1Tsaig Y, Donoho D L. Extensions of compressed sensing [ J ]. Signal Processing, 2006, 86 (3) : 549-571. 被引量:1
  • 2Chen S S, Donoho D L, Saunders M A. Atomic decom-position by basis pursuit [ J ]. SIAM Journal on Scientific Computing, 1998, 20(1) : 33-61. 被引量:1
  • 3Bregman L M. The relaxation method of finding the com- mon point of convex sets and its application to the solution of problems in convex programming[ J ]. USSR Computa- tional Mathematics and Mathematical Physics, 1967, 7 (3) : 200-217. 被引量:1
  • 4Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restora- tion[ J]. Muhiscale Modeling & Simulation, 2005, 4 (2) : 460-489. 被引量:1
  • 5Donoho D L. Compressed sensing [ J ]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 6Candes E J, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [ J ]. Foundations of Computational Mathematics, 2006, 6 (2) : 227-254. 被引量:1
  • 7Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Infor- mation Theory, 2006, 52(2): 489-509. 被引量:1
  • 8Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for 11-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1 (1) : 143-168. 被引量:1
  • 9Cai J F, Osher S, Shen Z. Linearized Bregman iterations for compressed sensing[J]. Mathematics of Computation, 2009, 78(267) : 1515-1536. 被引量:1
  • 10Cai J F, Osher S, Shen Z. Linearized Bregman itera- tions for frame-based image deblurring[J]. SIAM Journal on Imaging Sciences, 2009, 2( 1 ) : 226-252. 被引量:1

共引文献8

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部