期刊文献+

特征分类学习的结构稀疏传播图像修复方法 被引量:8

Image Inpainting by Characteristic Classification Learning and Patch Sparsity Propagation
下载PDF
导出
摘要 针对样本图像字典自适应性差、有效信息单一、造成图像稀疏表示模糊的不足的问题,提出一种基于特征分类学习字典的结构稀疏传播图像修复方法.首先将图像块按特征分类,根据不同特征的图像样本进行样本训练得到相对应的过完备字典;然后对不同特征的待修复图像块提取不同的有效信息进行稀疏编码,使得稀疏表示具有较强的自适应能力;最后针对结构稀疏传播模型带来的偏差进行修改,完善结构稀疏的传播机制.仿真实验结果表明,该方法可以有效地修复图像结构边缘、不规则纹理和平滑部分的图像信息,修复后的图像质量有较大的提升. Sample image dictionary has poor adaptability and simplex valid information, which results in bad image sparse representation. Because of the shortage, this paper discusses a new image inpainting method by characteristics classification learning and patch sparsity propagation. The proposed method classified the image patches by their different characteristics firstly, then got the corresponding over-complete dictionary by training the image blocks of different characteristics and extracted different valid information from these blocks for sparse coding, which makes the sparse representation to have stronger adaptive capacity. Finally, the propagation mechanisms can be improved by modifying the patch sparsity propagation model.Experi-ment results show that the proposed method can work on the edge, irregular textures and smooth portion ef-fectively and make the image quality higher.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第5期864-872,共9页 Journal of Computer-Aided Design & Computer Graphics
关键词 特征分类 局部方差 分类稀疏表示 结构稀疏 Mean-Shift K-SVD characteristic classification local variance Mean-Shift K-SVD classified sparse representation patch sparsity propagation
  • 相关文献

参考文献19

  • 1Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[C]// Computer Graphics Proceedings, Annual Conference Series,ACM SIGGRAPH. New York: ACM Press, 2000:417-424. 被引量:1
  • 2Shen J H, Chan T F. Mathematical models for local nontexture inpaintings[J]. SIAM Journal of Applied Mathematics, 2002, 62(3): 1019-1043. 被引量:1
  • 3Chan T F, Shen J H. Nontexture inpainting by curvature-driven diffusions [J]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449. 被引量:1
  • 4Criminisi A, Perez P, Toyama K. Region filling and object re- moval by exemplar-based image inpainting[J]. IEEE Transac- tion on Image Processing, 2004, 13(9): 1200-1212. 被引量:1
  • 5Wong A, Orchard J. A nonlocal-means approach to exem- plar-based inpainting[C]//Proeeedings of the 15th IEEE Inter- national Conference on Image Processing. Los Alamitos: IEEE Computer Society Press, 2008:2600-2603. 被引量:1
  • 6任澍,唐向宏,康佳伦.利用纹理和边缘特征的Criminisi改进算法[J].中国图象图形学报,2012,17(9):1085-1091. 被引量:20
  • 7Elad M, Starck J L, Querre P, et al. Simultaneous cartoon and texture image inpaniting using morphological component analysis (MCA)[J]. Applied and Computational Harmonic Analysis, 2005, 19(3): 340-358. 被引量:1
  • 8Fadili M J, Starck J L, Murtagh F. Inpainting and zooming us- ing sparse representations[J]. The Computer Journal, 2009, 52(1): 64-79. 被引量:1
  • 9Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1): 53-69. 被引量:1
  • 10Shen B, Hu W, Zhang Y M, et al. Image inpainting via sparse representation[C]//Proceedings of IEEE International Confer- ence on Acoustic, Speech and Signal Processing. Los Alamitos IEEE Computer Society Press, 2009:697-700. 被引量:1

二级参考文献34

共引文献104

同被引文献63

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部