期刊文献+

融合项目分类的加权Slope One算法 被引量:4

Integrating Item Category Into Weighted Slope One Algorithm
下载PDF
导出
摘要 互联网的迅速发展,将人们带入了信息爆炸的时代,而个性化推荐系统是解决该问题的一种非常有效的方法.研究的Slope One算法是一种基于项目的协同过滤推荐算法,该方法简单、高效、易于实现且具有合理的准确性.然而,该算法在偏差计算时考虑了所有共同评分的项目,在某些情况下,对不相关项目计算偏差可能会降低预测的准确性.为了在计算偏差时过滤掉不相关项目对预测结果的影响,将项目分类和K近邻引入Slope One算法,以期得到更好的准确性.最后,在MovieLens数据集上的实验结果表明,提出的方法在数据稀疏和共同评分项目较少的情况下仍能得到较好的准确性. With the rapid development of the Internet,it brings people into the era of information explosion,and the personalized recommendation system is a very effective way to solve this problem.In this paper,the Slope One algorithm is a kind of item-based collaborative filtering recommendation algorithm,and it is simple,efficient,easy to achieve,and it has reasonable accuracy.this algorithm takes all items into consideration when computing deviation,however,in some situation,computing deviation between unrelated items may finally decrease the prediction accuracy.Thus,to avoid causing a bad influence on the predicted results,we should filter unrelated items when computing deviation.Finally,we make experiments on the MovieLens datasets,and results show that the proposed algorithm in the case of sparse datasets and less neighbor achieves better prediction accuracy.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第9期2090-2095,共6页 Journal of Chinese Computer Systems
基金 国家自然科学青年基金项目(51305383)资助 教育部博士点专项基金项目(20131333120007)资助
关键词 个性化推荐 协同过滤 项目分类 项目K近邻 SLOPE One算法 personalized recommendation collaborative filtering item category Knearest neighbor of item Slope One algorithm
  • 相关文献

参考文献4

二级参考文献34

  • 1Goldberg D, Nichols D, Oki M, et al. Using collaborative filtering to weave an information tapestry [J]. Comm ACM, 1992, 35(12): 61-70. 被引量:1
  • 2Jonathan L, Joseph A, Terveen G, et al. Evaluating collaborative filtering recommender systems [J].ACM Trans lnfor Syst, 2004, 22(1): 5-53. 被引量:1
  • 3Herlocker J, Konstan J, Borchers A, et al. An algorithmic framework for performing collaborative filtering [C]// Proceedings of the 22rid Annual International ACM SIGIR Conf Res and Devel Infor Retrieval. University of California at Berkeley, California, Aug. 1999: 230-237. 被引量:1
  • 4Gediminas A, Alexander T. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [J].IEEE Trans Knowledge and Data Eng, 2005, 17(6): 734-749. 被引量:1
  • 5Sarwar B M, Karypis G, Konstan J A, et al. Item-based collaborative filtering recommendation algorithms [C]// Proceedings of the 10th International World Wide Web Conference (WWW10). Hong Kong, China, 2001:285 - 295. 被引量:1
  • 6Lemire D, Maclaehlan A. Slope one predictors for online rating-based collaborative filtering [C]//SIAM Data Mining (SDM’05). Newport Beach, California, April 21 - 23, 2005. 被引量:1
  • 7Schickel-Zuber V, Faltings B. Using hierarchical clustering for learning the ontologies used in recommendation systems[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA, 2007. New York, NY, USA: ACM, 2007: 599-608. 被引量:1
  • 8Hofmann T. Collaborative filtering via Gaussian probabilistic latent semantic analysis[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, 2003. New York, NY, USA: ACM, 2003: 259-266. 被引量:1
  • 9Canny J. Collaborative filtering with privacy via factor analysis[C]//Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, 2002. New York, NY, USA: ACM, 2002: 238-245. 被引量:1
  • 10Sarwar B, Karypis G, Konstan J, et al. Application of dimensionality reduction in recommender system - a case study[C]//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop, Boston, MA, USA, 2000. New York, NY, USA: ACM, 2000: 82-90. 被引量:1

共引文献54

同被引文献34

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部