期刊文献+

融合信任传播和矩阵分解的协同推荐算法 被引量:5

Collaborative recommendation algorithm integrated trust propagation and matrix factorization
下载PDF
导出
摘要 针对现有基于模型的协同推荐算法推荐精度不高和覆盖面较小的问题,引入社会网络中的信任信息对基于矩阵分解的推荐模型进行扩展,提出一种融合信任传播和矩阵分解的协同推荐算法。首先,基于社会网络中的直接信任关系,提出一种信任传播规则,实现社会网络中信任关系的传递;然后,利用矩阵分解技术降维处理大规模数据集的优势,提出一种融合信任传播机制和矩阵分解模型的协同推荐算法。在Epinions数据集上的实验结果表明,本文提出的推荐算法不仅提高了推荐的精度,而且增加了推荐的覆盖面。 Aiming at the problems that the existing model-based collaborative filtering algorithm has low recommendation accuracy and small recommendation coverage, a collaborative recommendation algorithm integrated trust propagation and matrix factoriza- tion by introducing the trust information of social network to extend the matrix factorization-based recommendation model is pro- posed in this paper. Firstly, a trust propagation rules based on the direct trust relationships of the social network is presented so as to propagate the trust in the social networks. Then a collaborative recommendation algorithm by integrating trust propagation and matrix factorization model is proposed according to the characteristics that the matrix factorization technique can reduce the dimen- sion of large-scale datasets. The experimental results on the Epinions show that the proposed algorithm can not only improve the recommendation accuracy but also increase the recommendation coverage.
出处 《燕山大学学报》 CAS 2013年第5期424-429,共6页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(F2013203124 F2011203219) 河北省高等学校科学技术研究重点项目(ZH2012028)
关键词 协同过滤 社会网络 信任传播 矩阵分解 collaborative filtering social network trust propagation matrix factorization
  • 相关文献

参考文献10

  • 1BobadillaJ, Hernando A, Ortega F, etal.. Collaborative filtering based on signific ances [J]. Information Science s, 2012, l 85 ( l ): 1 - 17. 被引量:1
  • 2Golbeck J. Computing and applying trust in web-based social net- works [D]. Maryland: University of Maryland, 2005. 被引量:1
  • 3Avesani P, Massa P, Tiella R. A trust-enhanced recommender system application: Moleskiing [C] //Proceedings of the 2005ACM symposium on Applied computing, Santa Fe, New Mexico, 2005: 1589-1593. 被引量:1
  • 4Massa P, Avesani P. Trust-aware recommender systems [C] // Proceeding of the 2007 ACM conference on Recommender sys- tems, Minneapolis, USA, 2007: 17-24. 被引量:1
  • 5Jamali M, Ester M. Trnstwalker: A random walk model for com- bining trust-based and item-based recommendation [C] //Proceed- ings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Pads, 2009: 397-406. 被引量:1
  • 6Koren Y, Bell R, Volinsky C. Matrix factodzation techniques for recommender systems [J]. Computer, 2009,42 (8): 30-37. 被引量:1
  • 7Mnih A, Salakhutdinov R. Probabilistic matrix factorization [C] //Advances in neural information processing systems. 2007: 1257-1264. 被引量:1
  • 8Ma H, King I, Lyu M R. Learning to recommend with social trust ensemble [C] //Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, Boston, USA, 2009: 203-210. 被引量:1
  • 9Milgram S. The small world problem [J]. Psychology Today, 1967,1 (1): 61-67. 被引量:1
  • 10Jia D Y, Zhang F Z, Liu S. A robust collaborative filtering re- commendation algorithm based on multidimensional trust model [J]. Journal of Software, 2013,8 (1): 11-18. 被引量:1

同被引文献26

  • 1Zhao X. Scorecard with latent factor models for user follow prediction problem. KDD-Cup Workshop. 2012. 被引量:1
  • 2Li Q, Yao M, Yang J, et al. Genetic algorithm and graph theory based matrix factorization method for online friend recommendation. The Scientific World Journal, 2014, Article ID 162148. 被引量:1
  • 3Shi Y, Larson M, Hanjalic A. Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering. Proc. of the 3rd ACM conference on Recommender systems. ACM. 2009. 125-132. 被引量:1
  • 4Ma H, King I, Lyu MR. Effective missing data prediction for collaborative filtering. Proc. of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. ACM. 2007. 39-46. 被引量:1
  • 5Yuan Q, Chen L, Zhao S. Factorization vs. regularization:fusing heterogeneous social relationships in top-n recommendation. Proc. of the Fifth ACM Conference on Recommender Systems. ACM. 2011. 245-252. 被引量:1
  • 6Yin D, Hong L, Davison BD. Structural link analysis and prediction in microblogs. Proc. of the 20th ACM International Conference on Information and Knowledge Management. ACM. 2011. 1163-1168. 被引量:1
  • 7Chen T, Tang L, Liu Q, et al. Combining factorization model and additive forest for collaborative followee recommendation. KDD-Cup Workshop. 2012. 被引量:1
  • 8Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. Proc. of the Fourth ACM Conference on Recommender Systems. ACM. 2010. 135-142. 被引量:1
  • 9Pessiot JF, Truong V, Usunier N, Gallinari P. Learning to rank for collaborative filtering. ACM Trans. on Information Systems. 2007. 被引量:1
  • 10Rendle S, Freudenthaler C, Gantner Z, et al. BPR:Bayesian personalized ranking from implicit feedback. Proc. of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press. 2009. 452-461. 被引量:1

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部