摘要
根据简化齐次平衡原则,导出了一个由齐次方程的解到一个可变色散系数的球KdV方程解的非线性变换。该齐次方程容许有指数函数形式的解,通过非线性变换,获得了可变色散系数的球KdV方程的精确衰减单孤波解和双孤波解。
Based on the simplified homogeneous balance principle,a nonlinear transformation from the solution of a homogeneous equation to the solution of a spherical Kd V equation with adjustable dispersive coefficient was derived. Since the homogeneous equation admited an exponential type solution,by nonlinear transformation,the exact decay single solitary wave solution and 2-solitary wave solution of the spherical Kd V equation with adjustable dispersive coefficient were acquired.
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2017年第6期70-73,81,共5页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(11301153
11601225)
河南科技大学校级科技创新平台建设项目(2015XPT001)
关键词
球KdV方程
简化齐次平衡原则
精确衰减孤波解
spherical KdV equation
simplified homogeneous balance principle
exact decay solitary wave solution