摘要
石油化工领域生产装置异常检测与诊断依赖机理模型和人工经验,存在主观性强、与实际参数不匹配等缺陷。在实践和总结现行石油化工生产装置异常检测与诊断技术的基础上,结合目前主流的大数据分析技术,对生产装置上获得的温度、流量、压力等数据进行实时分析,寻找大数据后面隐藏的规律,让大数据发声,及时预警和处理故障,并做出更明智的决策,减小损失。通过对某催化装置主分馏塔的塔顶温度变化幅度预警测试,比人工提前6min发现故障,将事故消除在萌芽状态。该技术具有工程实用价值,值得在工业控制现场进行实践和推广。
The mechanism and model of anomaly detection and diagnosis for the production equipment in petrochemical industry have the defects of strong subjectivity and mismatch with the actual parameters.Based on the practice and summary of anomaly detection and diagnosis technology of the oil chemical production equipment,combined with the current mainstream data analysis technology,real-time analysis of production equipment on the temperature,flow and pressure data,find the hidden data behind the law,make big data sound,timely warning and fault handling,and to make more informed decisions,reduce losses.Through the test of the tower top temperature variation range of a catalytic converter,it is found that the accident is eliminated in the bud state 6 minutes ahead of time.This technology has practical value in engineering,and it is worthy to be popularized in the field of industrial control.
出处
《电子测量技术》
2017年第7期170-172,187,共4页
Electronic Measurement Technology
基金
国家自然科学基金(51405382)
省级课题"互联网+"创新教育对策研究(SZJG-1629)资助项目
关键词
大数据
数据挖掘
异常检测
主成分分析
big data
data mining
anomaly detection
principal component analysis