期刊文献+

基于HOG特征的步态能量图身份识别算法 被引量:7

Base on gradient histogram energy image algorithm for person identification
下载PDF
导出
摘要 由于步态能量图像(GEI)是对二值轮廓图像序列相加求平均,然而,二值轮廓图像只能捕获人体轮廓的边界信息,人体的内部边界信息会被完全的丢弃掉,基于GEI算法的缺陷,提出了一种基于人体目标图像的方向梯度直方图(HOG)特征的GEI识别算法,此算法不仅能捕获人体轮廓的边界信息,而且还能提取人体重合的边界信息。获取人体目标图像的HOG特征的步态能量图,首先使用视频前景分割算法提取人体目标图像,然后提取图像序列中每帧人体目标图像的HOG特征;最后对图像序列中的每帧HOG特征图像相加求平均。在此基础上,依据GEI和HOG的思想,又实现了对传统步态能量图、二值轮廓图像序列、人体目标图像步态能量图进行HOG特征提取及直接构建人体目标图像步态能量图特征的表示,从而提出了4种拓展的能量图构建方法,并针对这5种算法与经典的GEI算法利用CASIA步态数据库进行了实验分析对比,实验结果表明算法效果良好。 In GEI,because binarized silhouettes are averaged over full gait sequence,binarized silhouettes can only capture edge information at the boundary of the person.Based on the defects of GEI algorithm,agradient histogram energy image algorithm for person identification was proposed.the gradient histogram energy image(GHEI)can capture edge information at the boundary of the person,but also captures edges within the person by means of gradient histograms.The process of gradient histogram energy image on the foreground of each frame(FEF-GHEI)calculation can be detailed as follows:First,the foregrounds are segmented from each frame.And then,we calculate HOG on the foreground of each frame separately.Finally,the resulting gradient histograms are averaged over full gait cycles.On this basis,according to the idea of gait energy image(GEI)and histograms of oriented gradients(HOG),the four variations of energy images proposed.The proposed five experiments and gait energy image(GEI)were run on the widely used CASIA gait database and carry on the analysis comparison,The proposed methods show significant performance improvements over the current state of the art.
出处 《电子测量技术》 2017年第7期100-104,共5页 Electronic Measurement Technology
基金 国家自然科学基金(61472196)资助项目
关键词 步态识别 步态能量图 HOG特征 生物识别 视频图像分割 gait recognition gait energy image biometrics recognition histogram of oriented gradients video segmentation
  • 相关文献

参考文献8

二级参考文献104

  • 1费丹,熊磊,吴建强.基于软件无线电的无线信道仿真仪设计与实现[J].仪器仪表学报,2013,34(S1):93-98. 被引量:26
  • 2郭磊,李克强,王建强,连小珉.一种基于特征的车辆检测方法[J].汽车工程,2006,28(11):1031-1035. 被引量:22
  • 3谢毅,黄席樾.基于机器视觉的车辆对称中心检测[J].重庆工学院学报,2007,21(7):8-11. 被引量:4
  • 4Chen B S,Lei Y Q,Li W W.A novel background model for real-time vehicle detection[C]//IEEE ICSP'04 Proceedings.Beijing,China:[s.n.],2004:1276-1279. 被引量:1
  • 5Stauffer C,Grimson W.Adaptive background mixture models for real-time tracking[C]//Proc IEEE Conference on Computer Vision and Pattern Recognition.Fort Collins,Colorado:IEEE,1999:246-252. 被引量:1
  • 6Michael H,Gaile G,John W.Foreground segmentation using adaptive mixture models in color and depth[C]//IEEE Workshop on Detection and Recognition of Events in Videos.[S.1.]:IEEE,2001:3-11. 被引量:1
  • 7Manuele B,Marco C,ttorio M.Unsupervised scene analysis:A hidden Markov model approach[J].Computer Vision and Image Understanding,2005,23(5):1-20. 被引量:1
  • 8Zhong J,Stan S.Segmenting foreground objects from a dynamic textured background via a robust Kalman filter[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV'03).[S.1.]:IEEE,2003:1242-1247. 被引量:1
  • 9Li L Y,Huang W M,Irene M,et al.Statistical modeling of complex backgrounds for foreground object detection[J].IEEE Transactions on Image Processing,2004,13(11):14-29. 被引量:1
  • 10Stauffer C,Grimson W.Learning patterns of activity using reahime tracking[J].IEEE Trans Pattern Anal Machine Intell,2000,22(8):79-95. 被引量:1

共引文献91

同被引文献35

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部