期刊文献+

基于色彩相似度的前景有效提取算法研究 被引量:3

Research on Effective Foreground Detection Algorithm Based on Color Similarity
下载PDF
导出
摘要 提出一种将辅助背景滤波与色彩相似度检测相结合的前景有效提取算法。该算法首先运用背景差分构建辅助背景来描述环境噪声分布,并用辅助背景对疑似前景区域进行空域滤波,以增强算法对背景变化的适应能力;然后建立色彩相似度作为前景目标评价标准,进行前景目标检测;最后对检测结果进行形态学操作,得到比较完整的前景目标。多场景实验表明,该算法检测效果良好,具有较强的鲁棒性,对阴影和光照变化具有很好地抑制作用;同时实时性好,空间复杂度低。 This paper proposes on effective foreground detection algorithm that the spatial filter is combined with the color similarity. The background difference is used for building the auxiliary background in the algorithm to describe the ambient noise distribution and the auxiliary background is used for performing spatial filter to improve its adaptability of background changes. Then the color semblance is set as the foreground evaluation criterion to detect the foreground regions. After foreground detection, the morphologic operation is dane to gain the complete foreground regions. Experimental results of multiple scenes show that this algorithm not only has robustness but also good inhibition of shadows and il umination changes and its efficiency is high and its complexity is low.
出处 《机械制造与自动化》 2014年第3期20-23,共4页 Machine Building & Automation
基金 国家自然科学基金资助项目(51175255)
关键词 手势识别 背景差分 辅助背景 空域滤波 色彩相似度 前景提取 gesture identification background difference auxiliary background spatial filter color semblance foreground detection
  • 相关文献

参考文献11

  • 1王传旭,张祥光,原春锋,刘云.基于邻域相关性和帧间连续性的前景目标分割[J].数据采集与处理,2007,22(3):288-291. 被引量:5
  • 2Ariel Amato, Mikhail Mozemv, Iv6n Huerta.et al.Background sub- traction technique based on chromaticity and intensity patterns [ C ]. Tampa, Florida, USA: IEEE Conference Publications,2008. 被引量:1
  • 3Elgammal A,Dura swami R,Harwood D,et al.Background and fore- ground modeling using nonparametric kernel density estimation for visual surveillance[ J].Proceedings of IEEE,2002.90(7):1151-1163. 被引量:1
  • 4Darrnn E Butler, Michael V.Real-time adaptive foreground back- ground segmentation [ J ]. Real-Time Imaging, 2005, 6 ( 11 ) :172-185. 被引量:1
  • 5Kedar A.Patwardhan, Guillermo Sapiro, Vassilios Morellas. Robust Foreground Detection In Video Layers[ C ] .IEEE Computer Socie- ty : Los Alamitos USA,2008. 被引量:1
  • 6Zivkovic Z. Vail der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction [ J ].Pattern Recognition Letters,2006,27 (7) : 773-750. 被引量:1
  • 7Yang H, Tan Y, Tian J, Liu J. Accurate dynamic scene model for moving object detection [ A ] , In Proc. Int Conf on Image Processing (ICIP)[C], San Antonio, TX, 2007, 6:157 -160. 被引量:1
  • 8Zhang W, Fang X, Yang X, Wu Q. Spatiotemporal Gaussian mixture model to detect moving objects in dynamic scenes [ J ], E- lectronic. Imaging, 2007; 16(2) :023013. 被引量:1
  • 9Tang P, Gao L, Liu Z. Salient moving object detection using stochastic approach filtering[ A]. Fourth Int Conf on Image and Graphics (ICIG)[ C ], Sichuan, China, 2007; 530-535. 被引量:1
  • 10B. A. S. Hasan, and Q. J. Gan, Sequential EM for unsuper- vised adaptive Gaussian mixture model based classifier[ A], In Proc. 6th Int. Conf. Machine Learning and Data Mining in Pat- tern Recognition [ C ], Leipzig, Germany, 2009 : 96-106. 被引量:1

二级参考文献21

  • 1万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 2Chen B S,Lei Y Q,Li W W.A novel background model for real-time vehicle detection[C]//IEEE ICSP'04 Proceedings.Beijing,China:[s.n.],2004:1276-1279. 被引量:1
  • 3Stauffer C,Grimson W.Adaptive background mixture models for real-time tracking[C]//Proc IEEE Conference on Computer Vision and Pattern Recognition.Fort Collins,Colorado:IEEE,1999:246-252. 被引量:1
  • 4Michael H,Gaile G,John W.Foreground segmentation using adaptive mixture models in color and depth[C]//IEEE Workshop on Detection and Recognition of Events in Videos.[S.1.]:IEEE,2001:3-11. 被引量:1
  • 5Manuele B,Marco C,ttorio M.Unsupervised scene analysis:A hidden Markov model approach[J].Computer Vision and Image Understanding,2005,23(5):1-20. 被引量:1
  • 6Zhong J,Stan S.Segmenting foreground objects from a dynamic textured background via a robust Kalman filter[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV'03).[S.1.]:IEEE,2003:1242-1247. 被引量:1
  • 7Li L Y,Huang W M,Irene M,et al.Statistical modeling of complex backgrounds for foreground object detection[J].IEEE Transactions on Image Processing,2004,13(11):14-29. 被引量:1
  • 8Stauffer C,Grimson W.Learning patterns of activity using reahime tracking[J].IEEE Trans Pattern Anal Machine Intell,2000,22(8):79-95. 被引量:1
  • 9Makito S,Toshikazu W,Hideto F,et al.Background subtraction based on cooccurrence of image variations[C]//Proceedjngs of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'03).[S.I.]:IEEE,2003,2:1351-1358. 被引量:1
  • 10Song M,Wang H.Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering[C]//SPE Conference on Intelligent Computing:Theory and Applications.Orlando.Florida:[s.n.],2005:1-17. 被引量:1

共引文献7

同被引文献45

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部