期刊文献+

模式植物拟南芥开花时间分子调控研究进展 被引量:15

Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana
下载PDF
导出
摘要 植物从营养生长到生殖生长的转变是开花发育的关键,在合适的时间开花对植物的生长和繁衍极为重要,植物开花时间的调控对农业生产发展意义重大。植物开花是由遗传因子和环境因子协同调节的一个复杂过程。近年来,对不同植物开花调控的研究,特别是对模式植物拟南芥(Arabidopsis thaliana(L.)Heynh.)的开花调控研究取得了显著进展,已探明开花时间分子调控的6条主要途径分别是光周期途径、春化途径、自主途径、温度途径、赤霉素途径和年龄途径。各遗传调控途径既相互独立又相互联系,构成一个复杂的开花调控网络。本文综述了模式植物拟南芥开花时间调控分子机制相关研究的最新进展,并对未来的研究进行了展望。 The transformation of plants from vegetative to reproductive growth is the key to flowering and development.Flowering at the right time is important for plant growth and inheritance.Control of flowering time also plays a crucial role in the development of agricultural production.Plant flowering molecular regulation is a complex synergistic regulation of endogenous and exogenous factors.In recent years,research on flowering control of different plants,especially Arabidopsis thaliana(L.) Heynh.,has made remarkable progress.The mechanism of flowering control mainly involves six major pathways,including the photoperiodic,vernalization,autonomous,temperature,gibberellin,and age pathways.A variety of genetic control channels that are independent and interrelated form a complex flowering network.Here we focused on the latest research progress on the functions of newly identified genes underlying plant flowering.This paper could help to further understand the molecular mechanisms involved in the transition from vegetative to reproductive growth in plants.
出处 《植物科学学报》 CAS CSCD 北大核心 2017年第4期603-608,共6页 Plant Science Journal
基金 国家自然科学基金(31660091) 海南大学高层次人才启动基金(KYQD1656)~~
关键词 拟南芥 开花时间 分子调控 基因 Arabidopsis thaliana Flowering time Molecular regulation Gene
  • 相关文献

参考文献1

二级参考文献51

  • 1Proudfoot NJ. Ending the message: poly(A) signals then and now. Genes Dev 2011; 25:1770-1782. 被引量:1
  • 2Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011 ; 43:853-866. 被引量:1
  • 3Tian B, Manley JL. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci 2013; 38:312- 320. 被引量:1
  • 4Derti A, Garrett-Engele P, Macisaac KD, et aL A quantitative atlas ofpolyadenylation in five mammals. Genome Res 2012; 22:1173-1183. 被引量:1
  • 5Hoque M, Ji Z, Zheng D, et al. Analysis of alternative cleav- age and polyadenylation by 3' region extraction and deep sequencing. Nat Methods 2013; 10:133-139. 被引量:1
  • 6Ozsolak F, Kapranov P, Foissac S, et al. Comprehensive polyadenylation site maps in yeast and human reveal perva- sive alternative polyadenylation. Cell 2010; 143:1018-1029. 被引量:1
  • 7Wu X, Liu M, Downie B, et al. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for ex- tensive alternative polyadenylation. Proc Natl Acad Sci USA 2011; 108:12533-12538. 被引量:1
  • 8Smibert P, Miura P, Westholm JO, et al. Global patterns oftissue-specific altemative polyadenylation in Drosophila. Cell Rep 2012; 1:277-289. 被引量:1
  • 9Ulitsky I, Shkumatava A, Jan CH, et al. Extensive alternative polyadenylation during zebrafish development. Genome Res 2012; 22:2054-2066. 被引量:1
  • 10Mangone M, Manoharan AP, Thierry-Mieg D, et al. The land- scape of C. elegans 3'UTRs. Science 2010; 329:432-435. 被引量:1

共引文献10

同被引文献186

引证文献15

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部