期刊文献+

一类(1+1)维色散方程组的多项式W_3~1×W_2~2不变子空间

Polynomial W_3~1× W_2~2 invariant subspace to systems of (1 + 1)-dimensional dispersive equations
下载PDF
导出
摘要 运用不变子空间方法研究一类(1+1)维色散方程组,借助Maple数学软件得出该方程组所允许的多项式不变子空间W_3~1×W_2~2中的分类,所得的不变子空间可以构造出方程组更多的精确解,从而丰富这类方程组精确解的研究,为这类方程组所描述的系统分析奠定理论基础。 The invariant subspace method is one of the effective methods to solve the generalized varia- ble separation solution of nonlinear equations. A family of ( 1 + 1 ) -dimensional dispersive equations are considered by this method. Based on computation system Maple, a classification of the polynomial Invariant sub- spaceW3 1× W 2 2 allowed by the equation is derived. More abundant exact solution of the equations are con- strutted by the gaining invariant subspace. Thus study has enriched the study of exact solutions of these equa- tions, which lays the theoretical foundation for the systematic analysis of the equations described by this kind of system.
作者 张亚敏 ZHANG Ya-min(Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China)
出处 《陕西理工大学学报(自然科学版)》 2017年第4期81-88,共8页 Journal of Shaanxi University of Technology:Natural Science Edition
基金 陕西省自然科学基础研究计划项目(2014JM1027) 陕西省教育厅科研计划项目(2016JK1047) 宝鸡文理学院科研项目(YK1619)
关键词 不变子空间 条件Lie-Bcklund对称 精确解 invariant subspaces conditional Lie-B^icklund symmetry exact solution
  • 相关文献

参考文献6

二级参考文献73

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部