期刊文献+

储备池计算硬件实现方案研究进展 被引量:3

Research Progress in Hardware Implementations of Reservoir Computing
原文传递
导出
摘要 储备池计算是一种适合处理时序信号的简单高效的机器学习算法。相比在传统电子计算机上用软件实现的方式,储备池计算在光器件上的实现方式将更有利于超高速和超低功耗的信息处理。介绍了储备池计算的基本原理,从输入层、储备池和输出层三个方面介绍了储备池计算硬件实现方案的研究进展,指出了储备池计算硬件实现方案发展中存在的问题,并展望了其未来发展趋势。 Reservoir computing is a simple and effective machine learning algorithm to process time dependent signals. Compared with the software implementation in traditional electronic computer, reservoir computing implementation with optical components is more beneficial to information processing with ultrafast speed and ultralow power consumption. The basic principles of reservoir computing are presented, and the research progress in hardware implementation of reservoir computers is introduced from three aspects of input layer, reservoir and output layer. The existing problems in the development of the hardware implementation are demonstrated, and their future developing trends are discussed as well.
出处 《激光与光电子学进展》 CSCD 北大核心 2017年第8期40-49,共10页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61108004) 上海市浦江人才计划(14PJD017) 上海市特种光纤与光接入网重点实验室开放课题(SKLSFO2015-02)
关键词 光电子学 光信息处理 递归神经网络 储备池计算 非线性动力学系统 掩模 optoelectronics photonic information processing recurse neural network reservoir computing nonlinear dynamic system mask
  • 相关文献

参考文献5

二级参考文献55

  • 1方捻,王陆唐,郭淑琴,黄肇明.偏振态移位键控光混沌通信系统的保密性[J].光学学报,2006,26(6):812-817. 被引量:12
  • 2R.S.Tucker.The role of optics in computing[J].Nature Photon.,2010,4(7): 405. 被引量:1
  • 3H.J.Caulfield,S.Dolev.Why future supercomputing requires optics[J].Nat.Photonics,2010,4(5): 261-263. 被引量:1
  • 4D.Woods,T.J.Naughton.Optical computing: photonic neural networks[J].Nature Phys.,2012,8(4): 257-259. 被引量:1
  • 5M.Lukoeviius,H.Jaeger.Reservoir computing approaches to recurrent neural network training[J].Computer Science Review,2009,3(3): 127-149. 被引量:1
  • 6M.C.Ozturk,D.Xu,J.C.Principe.Analysis and design of echo state networks[J].Neural Computation,2007,19(1): 111-138. 被引量:1
  • 7W.Maass,T.Natschlager,H.Markram.Real-time computing without stable states: a new framework for neural computation based on perturbations[J].Neural Computation,2002,14(11): 2531-2560. 被引量:1
  • 8D.Verstraeten,B.Schrauwen,M.D′Haene et al..An experimental unification of reservoir computing methods[J].Neural Networks,2007,20(3): 391-403. 被引量:1
  • 9M.Lukoeviius,H.Jaeger,B.Schrauwen.Reservoir computing trends[J].KI-Künstliche Intelligenz,2012,26(4): 365-371. 被引量:1
  • 10A.Argyris,D.Syvridis,L.Larger et al..Chaos-based communications at high bit rates using commercial fibre-optic links[J].Nature,2005,438(7066): 343-346. 被引量:1

共引文献17

同被引文献26

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部