期刊文献+

基于改进型PSO-BP神经网络算法的水质评价 被引量:4

Based on the improved PSO-BP neural network algorithm in the quality assessment of water environment
下载PDF
导出
摘要 环境污染现在是大众所关注的一个重要的问题,需要拿出科学的方法和手段应对这个问题。文中提出了一种改进型的PSO-BP神经网络相结合的环境质量评价方法,以大理的洱海水域为例,选取了实际的水质监测数据作为样本,进行了系统的分析。通过对传统的BP神经网络法、PSO-BP神经网络和改进型PSO-BP算法三种方法应用结果的对比,本文得出改进的PSO-BP神经网络方法在相同精度下拥有更高的效率。 The pollution of environment is an important issue be concerned now,and we should come up with scientific methods to cope with this problem. This paper proposes a modified PSO-BP neural network algorithm combined with the method of environmental quality assessment. It chooses Erhai Dali as an example,selecting the monitoring data of water quality as sample and carrying on a series of analyses.Through the comparison to the results of three methods,which are the traditional BP neural network,PSO-BP neural network and the improved PSO-BP algorithm,it concluded that the improved PSO-BP algorithm can get higher efficiency under the same precision.
出处 《信息技术》 2017年第8期11-15,20,共6页 Information Technology
基金 云南省基金项目(2013FZ010) 云南省基金项目(2014RA051)
关键词 水质评价 BP神经网络 粒子群 改进PSO-BP神经网络算法 water quality assessment BP neural network particle swarm improved PSO-BP neural network algorithm
  • 相关文献

参考文献7

二级参考文献11

  • 1杨志清.21世纪水资源展望[J].水资源保护,2004,20(4):66-68. 被引量:37
  • 2武文慧.浅析我国水资源现状[J].国土资源科技管理,2005,22(4):71-74. 被引量:16
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996.. 被引量:115
  • 4Abdelnaser Adas. Traffic models in broadband networks. IEEE CommunieaiionsMagazi he, 1997,35 ( 7 ) : 82 - 89. 被引量:1
  • 5Clerc M, Kennedy J. The Particle Swarm-Explosion, Stability, and Convergence in A Multidimensional Comlex Trans. on Evolutionary Computation[ J]. 2002,6(1) Space IEEE :58 -73. 被引量:1
  • 6Vapnik V N. The nature of statistical learning theory [ M ]. New York Sprineer-Verlag, 1995. 被引量:1
  • 7Hongkyu Jo,Ingoo Han. Integration of Case-Based Forecasting, Nerual network,and Discriminant Analysis for Bankruptcy Prediction. Expert System with Applications, 1996,11 (4) :415 -422. 被引量:1
  • 8罗四维.大规模人工神经网络理论基础.清华大学出版社. 被引量:1
  • 9[2]Dayhoff J E,Deleo J M.Artificial neural networks[J].Cancer,2001,9l(8):1615-1634. 被引量:1
  • 10谢宏,陈志业,牛东晓.短期电力负荷预测的数据主成份分析[J].电网技术,2000,24(1):43-46. 被引量:40

共引文献396

同被引文献26

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部