期刊文献+

交易信息、跳跃发现与波动率估计 被引量:6

Trading Data,Jump Detection and Estimation of Integrated Volatility
下载PDF
导出
摘要 在高频金融数据研究中,估计金融资产价格序列积分波动率时,往往需要考虑市场微观结构噪声与资产价格跳跃的影响。本文将市场微观结构噪声部分地表示成交易信息的参数函数,并结合资产收益序列的跳跃特征,提出资产收益的高斯混合模型。本文利用EM算法进行噪声参数估计的同时,识别资产价格的跳跃,进而提出一种新的积分波动率的估计量。本文提出的方法可以视为Li等(2016)的改进,并在模拟研究中,得到了比Li等(2016)更好的参数估计效果,且即使在跳跃幅度分布误设的情况下,也具有良好的识别跳跃的功能。在应用举例中,对比了本文方法与Lee和Mykland(2008)的跳跃发现方法,论证了本文的模型在识别跳跃方面的可靠性。 When estimating integrated volatility of a financial asset, the impacts of market microstructure noise and jumps should be taken into consideration in the research of high-frequency financial data. This paper proposes a Gaussian mixture model based on the market microstrncture noise partially expressed as a parametric function of trading data and the jump characteristics of the asset returns series. A new estimator of integrated volatility is put forward after the jumps of the assets prices are identified while EM algorithm is applied to estimate the parameters of noise. The model put forward in this paper could be regarded as an improvement of Li et 81. (2016), with a better result in simulation study, and is able to perform well in detecting the jumps even when the distribution of jump range was set by mistake. At the end, in a practical example, In comparison with Lee and Mykland (2008), the model has been justified in terms of its reliability in detecting the jumps.
作者 吴奔 张波
出处 《统计研究》 CSSCI 北大核心 2017年第8期109-119,共11页 Statistical Research
基金 国家自然科学基金项目"金融资产配置中面板数据动态因子模型研究"(71271210) 国家自然科学基金项目"非对称随机波动建模及其在金融风险管理中的应用研究"(71471173) 教育部人文社会科学重点研究基地项目"金融风险测度与管理若干前沿问题研究"(14JJD910002)资助 中国人民大学2016年度拔尖创新人才培育资助计划成果
关键词 已实现波动率 高斯混合模型 市场微观结构噪声 跳跃 Realized Volatility Gaussian Mixture Model Market Microstructure Noise Jump
  • 相关文献

参考文献2

二级参考文献15

  • 1孙大飞,Dempster A P, Laird N M, et al. Maximum likelihood from Incomplete data via the EM algorithm[J ]. Journal of the Royal Statistical Society, Series B, 1997,39(1) :1-38. 被引量:1
  • 2Meng X L, Rubin D B. Recent Extension to the EM algorithm[M]. Bayesian Statistics 4. Oxford: Oxford University Press, 1992: 307 - 320. 被引量:1
  • 3Andrieu C,Doucet A. Online Expection- Maximization Type Algorithms for Parameter Estimation in General State Space Models[C]//in Proc. IEEE Int. Conf. Aooustics, Speech, and Signal Processing. [s. l. ] : [s. n. ] ,2003:69- 72. 被引量:1
  • 4贾沛璋,朱征桃.最优估计及其应用[M].北京:科学出版社,1994. 被引量:1
  • 5Parzen E. On the estimation of a probability density function andmode [ J ]. Annals of Mathematical Statistics, 1962,33 : 1065 - 1076. 被引量:1
  • 6Wang A P, Wang H. Minimising entropy and mean tracking control for affine nonlinear and non - Gaussian dynamic stochastic system[J]. IEE Proceedings Control Theory & Application, 2005,151 (4) : 405 - 520. 被引量:1
  • 7Wang A P, Wang H, Tan J. Optimal Filtering for Multivariable Stochastic System via Residual Probability Density Function Shaping[ C]//Proceedings of SICE 2005 Annual Corderence. [s. l. ] : [s. n. ] ,2005:215 - 219. 被引量:1
  • 8Guo L, Wang H. Mininum entropy filtering for multivariate stochastic systems with non- Gaussian noises [ J ]. IEEE Transactions on Automatic Control,2006,51(4) :670 -695. 被引量:1
  • 9郭雷,程代展,张纪峰,等.控制理论导论[M].北京:科学出版社,2005. 被引量:13
  • 10梁应敞,张贤达,李衍达,张沛武.非高斯相关噪声中高斯信号的时延估计[J].电子科学学刊,1997,19(5):606-612. 被引量:6

共引文献91

同被引文献47

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部