期刊文献+

手机用户上网时段的混合Markov预测方法 被引量:4

A mixed Markov Method to Predict the Surfing Time Period of Mobile Phone Users
原文传递
导出
摘要 手机用户上网时段研究与预测对手机用户行为与模式分析、网络服务内容设计、网络黏性与心理、移动互联商业智能等具有重要意义。本文结合Markov模型和关联规则模型,提出一种手机用户上网时段的混合Markov预测方法——Lift-Markov(LM)方法,并采用中国某城市4G手机用户流量上网产生的流量收费数据进行实验验证与分析。研究发现:该实验区域37.66%的手机用户个体存在明显的以天为周期的周期性特性;本文所提出的LM方法在10、20、30、40、50、60 min间隔时的平均预测准确率都优于Markov模型和Mostvalue模型,其中在60 min间隔时能达到79.75%的平均准确率,优于Markov模型(74.64%)和Mostvalue模型(64.44%);LM方法的预测准确率分布相比于其他2种模型都要窄,而且密度分布峰值最高、标准差最小,说明本文方法对人群的上网时段预测准确率较为集中与稳定,具有较好的预测性能。 In recent years, big data of mobile phones has become a great data source for researches and applications. It has been widely used to understand the human behaviors in cyberspace space. Researching and forecasting the surfing time of mobile phone users have great significance for analyzing mobile phone users' behaviors and patterns, designing network service, and understanding the relationship of surfing behaviors, website stickiness, users' psychology, mobile Internet intelligent business. We proposed a mixed Markov method (Lift-Markov method. LM), combining the traditional Markov model and association rule model, to predict the surfing time period of mobile phone users. A dataset of surfing records of 4G mobile phone users collected by Hubei Mobile within twenty days is used to demonstrate the capability of predicting web-surfing time periods of users. LM method has a better prediction accuracy when it is compared with the traditional Markov model and the Most-val- ue model. There are two main findings here: the first one is that there is obvious periodicity in surfing time peri- ods of 37.66% mobile phone users in experimental area by Fourier transformation and periodic tests, which could help us understand the surfing characteristics of users. Also, the second one is that the average accuracy of our proposed method is better than the Markov model and the Most-value model in 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes and 60 minutes intervals. LM method can perform an average accuracy of 79.75% in predicting web-surfing time on a scale of 60 minutes, better than the Markov model (74.64%) and the Most-value model (64.44%). Compared with the other two models, the accuracy distribution of the LM method is narrower, the peak value is higher, and the standard deviation is smaller, which means that the prediction accuracy of the LM method is more concentrated and stable, with good predictive performance.
出处 《地球信息科学学报》 CSCD 北大核心 2017年第8期1019-1025,共7页 Journal of Geo-information Science
基金 国家自然科学基金项目(41231171 41371420) 湖北省青年英才开发计划 武汉大学自主科研项目拔尖创新人才类资助项目(2042015KF0167)
关键词 手机上网数据 手机上网行为 上网时间特征 时段预测 混合Markov方法 mobile phone data surfing behaviors by mobile phone characteristics of surfing time time period prediction mixed Markov method
  • 相关文献

参考文献6

二级参考文献128

  • 1李双双,陈毅文.点击流:一种研究网上消费者的新范式[J].心理科学进展,2007,15(4):715-720. 被引量:4
  • 2中国互联网络信息中心(CNNIC).第24次中国互联网络发展状况统计报告[R/OL].http://www.cnnic.net.cn/html/Dir/2009/07/15/5637.htm.2009-07-15. 被引量:2
  • 3Chun - Yao huang, Yung - Cheng shen , I - Ping Chiang et al.. Characterizing Web Users' Online Information Behavior[ J]. Journal of the American Society for Information Science and Technology, 2007, 58 (13) : 1988 -1997. 被引量:1
  • 4Patrali Chatterjee, Donna L Hoffman, Thomas P Novak. Modeling the Clickstream: Implications for Web - Based Advertising Efforts [J]. Marketing Science, 2003,22(4) :520 -541. 被引量:1
  • 5Moe Wendy W, Fader Peter S. Capturing Evolving Visit Behavior in Clickstream Data [ J ]. Journal of Interactive Marketing, 2004, 18 (1) :5 -19. 被引量:1
  • 6Peter J Danaher, Guy W Mullarkey, Skander Essegaier. Factors Affecting Web Site Visit Duration : A Cross - Domain Analysis [ J ]. Journal of Marketing Research, 2006, 43(2) :182 - 194. 被引量:1
  • 7Johnson, Eric J, Wendy W Moe, Peter S Fader, et al. On the Depth and Dynamics of Online Search Behavior [ J ]. Management Science, 2004, 50 (3), 299 - 308. 被引量:1
  • 8Moe, Wendy W, Fader, Peter S. Dynamic Conversion Behavior at E - Commerce Sites [ J]. Management Science, 2004,50 (3) :326 - 335. 被引量:1
  • 9Borgman C L, Hirsh S G, Hiller J. Rethinking Online Monitoring Methods for Information Retrieval Systems: From Search Product to Search Process [ J ]. Journal of the American Society for Information Science and Technology, 1996, 47 (7) :568 - 583. 被引量:1
  • 10Gillespie A, Krishna M, Oliver C, et al. Online Behavior-Stickiness [ N]. Available: http://www2000.ogsm. vanderbilt. edu/ student_paper.html, 2007 - 06 - 15. 被引量:1

共引文献124

同被引文献17

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部