期刊文献+

部分级联特征的离线手写体汉字识别方法 被引量:2

Offline Hand-Written Chinese Character Recognition Based on Partial Cascade Feature
下载PDF
导出
摘要 针对汉字类别多、风格多等识别难点,提出了一种基于LS-SVM的部分级联特征分类的离线手写体识别方法.具体包括霍夫空间加权采样和局部二值分布直方图两种新的特征提取算法,其可将任意大小的图像映射到固定长度的特征向量上,克服了已有特征提取算法的需要归一化、对笔画密度分布敏感等缺点;提出了基于部分级联特征的分类方式;提出了常见多分类方式的类别与正确率的关系,并给出了相应的数学证明. A method for offiine hand-written Chinese character recognition is proposed based on partial cascade feature classification, which is of much research value and highly innovative. Two feature extracting algorithms are proposed as follows: weighted Low Threshold Hough Space Sampling(wHHS) and Histogram of Local Binary Distribution(HLBD). These algorithms can map images of various sizes into vectors with fixed dimension, but eliminate the disadvantages of existing algorithms, which has high sensitivity of the distribution of strokes destiny, and demand uniformization. A strategy of classification based on partial cascade feature is proposed and the relationship between number of category for classification and accuracy is put forward with the corresponding mathematical proof.
出处 《计算机系统应用》 2017年第8期134-140,共7页 Computer Systems & Applications
基金 福建省引导项目(2016Y0031) 福建省教育厅项目(JA15136) 福建师范大学教学改革研究项目(I201602015) 福建师范大学2015年省级大学生创新训练计划项目(201510394044)
关键词 离线手写体识别 LS-SVM 多分类 部分级联特征 offiifle hand-written Chinese character recognition LS-SVM muti-classification partial cascade feature
  • 相关文献

参考文献7

二级参考文献42

共引文献135

同被引文献14

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部