摘要
该文研究如下Klein-Gordon-Maxwell系统■多重解的存在性,其中4<p<6,1<q<2,λ>0.在a(x)、b(x)、参数λ满足一定的假设条件下,通过变分方法证明了系统无穷解的存在性.补充和完善了以上方程解存在性的以往结果.
In this paper, we establish the multiplicity of solutions for the Klein-Gordon- Maxwell system{-△Ф+Фu^2=-ωu^2. x∈R^3,-△u+u-(2ω+Ф)Фu=a(x)|u|^p-2u+λb(x)|u|^q-2u,x∈R^3 where 4 〈 p 〈 6, 1 〈 q 〈 2, A 〉 O. Under some assumptions on the a(x), b(x), λ, the multiplicity result of solutions for the system was obtained by variational methods. Our result is a complement to some recent works concerning the existence of solutions of the above equation.
作者
陈丽珍
李安然
李刚
Chen Lizhen Li Anran Li Gang(Department of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006 School of Mathematical Sciences, Shanxi University, Taiyuan 030006 School of Mathematical Sciences, Yangzhou University, Jiangsu Yangzhou 225002)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2017年第4期663-670,共8页
Acta Mathematica Scientia
基金
国家自然科学基金(11271316)
山西财经大学青年科研基金(Z06045)~~