摘要
鉴于间隙函数与误差界在优化方法中有重要的作用,特别地,误差界能刻画可行点和变分不等式解集之间的有效估计距离.利用像空间分析法,构造了带锥约束变分不等式的间隙函数.然后,利用此间隙函数,得到了带锥约束变分不等式的误差界.
The gap function and the error bound play an important role in optimization methods and the error bound,especially,can characterize the effective estimated distance between a feasible point and the solution set of variational inequalities.In this article,by using the image space analysis,gap functions for a class of variational inequalities with cone constraints are proposed.Moreover,error bounds,which provide an effective estimated distance between a feasible point and the solution set,for the variational inequalities are established via the gap functions.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第8期101-107,共7页
Journal of Southwest University(Natural Science Edition)
基金
重庆市基础与前沿研究项目(cstc2016jcyjA0239)
中央高校基本科研业务费专项(XDJK2014C073)
关键词
约束变分不等式
像空间分析
间隙函数
误差界
constrained variational inequality
image space analysis
gap function
error bound