期刊文献+

文本情感倾向性分析 被引量:4

Analysis of Text Sentiment Orientation
下载PDF
导出
摘要 针对情感分析工作中需要繁琐的人工标注问题,提出一种基于评价单元五元组的情感分析方法。该方法只需合适的情感词典,不需要大量人工标注即可对其进行情感倾向分析。通过联合无监督和有监督学习方法构建评价词表和评价对象词表,在此基础上采用以情感词为链的线性条件随机场模型构建评价单元。最后根据语意搭配关系将评价对象分为4类,情感词分为5类,结合句型、否定词、程度词对情感分析的影响,提出计算文本情感倾向的方法。对比实验表明,本文方法在明显减少人工工作的前提下,取得了较高的F值,并且具有一定的跨领域性。 Aiming at the problem of manual annotation in the text sentiment analysis, a new method based on five tuple of ap- praisal expression is proposed. This method just needs appropriate sentiment dictionary. The sentiment tendencies of comments are analyzed without lots of markup work. Through the combination of unsupervised and supervised learning methods to construct the evaluation thesaurus and evaluation object list; the extraction of appraisal expression is based on these lists, using linear chain conditional random fields model, which is in the chain of sentiment words. Finally, evaluation objects are divided into four cate- gories and emotional words are divided into five types according to the relationship between semantic collocation, combined with the influence of sentence pattern, negative word and degree word on the sentiment analysis, a method of calculating the sentiment tendency of the text is put forward. Compared with other methods, this method based on the appraisal expression has obtained bet- ter F value, and it has a certain cross domain.
出处 《计算机与现代化》 2017年第7期10-15,52,共7页 Computer and Modernization
关键词 情感分类 信息抽取 意见挖掘 情感分析 sentiment classification information extract opinion mining sentiment analysis
  • 相关文献

参考文献3

  • 1王荣洋,鞠久朋,李寿山,周国栋.基于CRFs的评价对象抽取特征研究[J].中文信息学报,2012,26(2):56-61. 被引量:38
  • 2朱圣代..细颗粒度情感分析若干技术研究[D].杭州电子科技大学,2012:
  • 3丁晟春著..在线评论信息挖掘研究[M].北京:科学出版社,2014:209.

二级参考文献12

  • 1倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642. 被引量:5
  • 2Pang B.,Lee L.,Vaithyanathan S.Thumbs Up Sentiment Classification Using Machine Learning Techniques[C]//Proceedings of EMNLP-2002.2002:79-86. 被引量:1
  • 3Li S.,Huang C.,Zong C. Multi-domain Sentiment Classification with Classifier Combination[J].Journal of Computer Science and Technology (JCST),2011,26(1):25-33. 被引量:1
  • 4Kim S.,Hovy E.Extracting Opinions,Opinion Holders,and Topics Expressed in Online News Media Text[C]//Proceedings of the ACL Workshop on Sentiment and Subjectivity in Text.2006:1-8. 被引量:1
  • 5Lafferty J.,McCallum A.,Pereira F. Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of IC-ML-2001.2001:282-289. 被引量:1
  • 6Jakob N.,Gurevych I.Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields[C]//Proceedings of EMNLP-2010.2010:1035-1045. 被引量:1
  • 7Hu M,Liu B.Mining Opinion Features in Customer Reviews[C]//Proceedings of AAAI-2004.2004:755-760. 被引量:1
  • 8Titov I.,McDonald R.Modeling Online Reviews with Multi-grain Topic Models[C]//Proceedings of WWW-2008.2008:111-120. 被引量:1
  • 9Lu Y.,Zhai C.,Sundaresan N.Rated aspect summarization of short comments[C]//Proceedings of WWW-2009.2009:131-140. 被引量:1
  • 10Lu B.Identifying Opinion Holders and Targets with Dependency Parser in Chinese News Texts[C]//Proceedings of the NAACL HLT 2010 Student Research Workshop,Los Angeles,California.2010:46-51. 被引量:1

共引文献37

同被引文献12

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部