期刊文献+

基于不变角度轮廓线的三维目标识别 被引量:2

3D target recognition based on invariant angle contour
下载PDF
导出
摘要 三维物体的快速准确识别是研究的热点.根据局部特征变换的特点,提出了不变角度轮廓线的识别方法.算法通过点云矢量特征对物体进行局部分割,利用欧式距离、测地距离以及角度三个变量,建立其不变角度轮廓特征描述,进一步提取不变矩特征,构建特征向量数据库集.被识别物体的特征描述和数据库中特征进行夹角余弦匹配,可完成物体的识别.通过识别实验以及识别算法性能分析,结果表明算法具有较高的识别率和识别效率,可以用于复杂点云物体识别. The fast and accurate identification of three-dimensional objects is a hot research topic. Ac- cording to the characteristics of local feature transform, one new method called the invariant angle con- tour line was proposed. Local segmentation of the objects was realized by point cloud vector feature, and then using Euclidean distance, measuring the distance and angle of the three variables, the invariant point outline feature description was established, after further extracting invariant moments feature, the feature vector database would be constructed. Through the cosine matching between feature description of the object and database, the object recognition can be accomplished by comparing the threshold value. The recognition experiment results show that the algorithm has a high recognition rate and recognition efficiency, and can be used for complex point cloud objects recognition.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第4期759-763,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金民航联合基金(U1633127) 民航局科技项目(20150215) 四川省科技项目基金(2015JY0188)
关键词 三维物体 识别 不变角度轮廓线 不变矩 3D object Recognition Invariant angle contour Invariant moments
  • 相关文献

参考文献9

二级参考文献78

  • 1赵瑞珍,胡占义.太阳射电爆发中图像网纹消除的小波NeighShrink方法[J].光谱学与光谱分析,2007,27(1):198-201. 被引量:6
  • 2段福庆,吴福朝,胡占义.基于平行性约束的摄像机标定与3D重构[J].软件学报,2007,18(6):1350-1360. 被引量:11
  • 3范伊红,彭海云,张元.基于SVM的车型识别系统的设计与实现[J].微计算机信息,2007,23(03S):296-297. 被引量:5
  • 4Johnson A E, Hebert M. Using spin images for efficient object recognition in clutterd 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 433-449. 被引量:1
  • 5Vasile A N, Marino R M. Pose-independent automatic target detection and recognition using 3D laser radar imagery[J]. Lincoln Laboratory Journal, 2005, 15(1): 61-78. 被引量:1
  • 6Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 1992, 14(2): 239-256. 被引量:1
  • 7Foster M S, Schott J R, Messinger D W. Spin-image target detection algorithm applied to low density 3D point clouds[J]. Journal of Applied Remote Sensing, 2008, 2(1): 1-15. 被引量:1
  • 8Gronwall C, Gustafsson F, Millnert M. Ground target recognition using rectangle estimation[J]. IEEE Transactions on Image Processing, 2006, 15 (11) : 3401 3409. 被引量:1
  • 9Chua C S, Jarvis R. Point signatures: a new repre-sentation for 3D object recognition[J]. International Journal of Computer Vision, 1997, 25(1): 63-85. 被引量:1
  • 10Dorai C, Jain A K. COSMOS--a representation scheme for 3D free-form object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1115-1130. 被引量:1

共引文献23

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部