期刊文献+

基于ARMA模型的船舶海水冷却系统参数预测 被引量:9

Ship Seawater Cooling System Parameter Prediction Based on ARMA Model
下载PDF
导出
摘要 船舶海水冷却系统与船外海水直接接触,工作环境较为恶劣,而基于小波理论、灰色理论等参数预测方法受环境影响较大,为了实现对船舶海水冷却系统状态参数的准确预测,提出了根据平稳时间序列建立自回归移动平均模型(ARMA)的方法;介绍了ARMA模型原理及建模过程;选取"育鲲轮"海水冷却系统6天的状态参数作为训练样本,输入到ARMA预测模型中进行训练;在MATLAB环境下,获得预测数据;运用平均绝对百分比误差对预测模型的准确性进行验证并对误差进行分析,结果表明所建立的船舶海水冷却系统状态参数预测模型具有良好的预测能力,能有效地反应未来一段时间海水冷却系统的工作状态的变化,提示系统是否存在异常,为早期故障诊断提供有效手段,进而为船舶的稳定运营提供了条件。 The ship seawater cooling system contacts with seawater, so the working environments and conditions are bad, and some parameter prediction methods are greatly influenced by the environment such as wavelet theory, gray theory and so on. In order to realize the state parameters prediction of ship seawater cooling system correctly, ARMA prediction model method of stationary time series is proposed. Then the principle and modeling process of ARMA model is introduced, selecting 6 days' state parameters of MV "YUKUN" ship seawater cooling system as training sample, and inputting the training sample into the ARMA model, getting the prediction data by MATLAB. Then using the MAPE to verify the prediction model and analyzing the error, the result shows the model has good prediction ability. And the model can effectively response the changes of seawater cooling system's working state in the period ahead and suggest weather the system is abnormal, and provide effective ways for the early fault diagnosis. Furthermore, the model provides advantages for the stable operation of the ships.
出处 《计算机测量与控制》 2017年第7期285-289,共5页 Computer Measurement &Control
关键词 自回归移动平均模型 参数预测 冷却水系统 平均百分比误差 ARMA model state parameters prediction seawater cooling system MAPE
  • 相关文献

参考文献8

二级参考文献49

  • 1熊志化,张卫庆,赵瑜,邵惠鹤.基于混合高斯过程的多模型热力参数测量软仪表[J].中国电机工程学报,2005,25(7):30-33. 被引量:8
  • 2熊志化,杨海滨,吴云峰,邵惠鹤.基于稀疏高斯过程的热力参数软仪表[J].中国电机工程学报,2005,25(8):130-133. 被引量:1
  • 3孙宏斌,张伯明,相年德.Ward型等值的非线性误差分析与应用[J].电力系统自动化,1996,20(9):12-16. 被引量:17
  • 4SCHOLKOPF B,SMOLA A,MUller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998,10(5) : 1299-1319. 被引量:1
  • 5LEE J M,YOO C,CHOI S W,et al. Nonlinear process monitoring using kernel principal component analysis[Jl. Chemical Engineering Science ,2004,59( 1 ) :223-234. 被引量:1
  • 6GIBASS M N,MACKAY D J C. Efficient implementation of Gaussian process[R]. Cambridge:Department of Physics,Cavendish Laboratory, Cambridge University,UK, 1997. 被引量:1
  • 7ROSIPAL R,GIROLAMI M,TREJO L J,et al. Kernel PCA for feature extraction and de-noising in nonlinear regression[J]. Neural Computation & Application,2001,10(12):231-243. 被引量:1
  • 8DACHAPAK C,JIN C Z,YANG Z J,et al. Kernel principal component regression in reproducing Hilbert space [C ]//Proceedings of the 34th ISCIE International Symposium on Stochastic Systems Theory and Its Applications. Fukuoka,Japan : [ s.n. ], 2002,213-218. 被引量:1
  • 9WOLD S. Cross-validatory estimation of the number of components in factor and principal components models[J]. Technometrics, 1978,20 (4) : 397-405. 被引量:1
  • 10LEE J M,LEE I B. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004,59( 1 ) :223-234. 被引量:1

共引文献83

同被引文献86

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部