期刊文献+

基于KPCR的发电机组参数预测与估计 被引量:6

Parameter prediction and estimation for turbine generator based on KPCR
下载PDF
导出
摘要 为了解决机组运行过程中参数失效和优化过程中参数计算的问题,提出了基于核回归(KPCR)的发电机组参数预测和估计方法。首先用正常数据建立机组参数的预测和估计模型,确定各变量之间的回归关系,然后将其用于参数的在线预测与估计。该方法可以有效地捕捉变量间的非线性关系,参数预测和估计效果明显好于偏最小二乘回归(PLS)和主元回归(PCR)等线性回归方法。某电厂1000 MW发电机组烟气含氧量历史特征数据集仿真试验证明了该方法的有效性。 For the parameter failure during generation unit operation and the parameter calculation of online unit optimization,the parameter prediction and estimation based on KPCR(Kernel Principal Component Regression) is proposed. The prediction and estimation model is established with normal data and the regression relationship among variables is analyzed,according to which,the parameters are online predicted and estimated. The proposed approach can effectively capture the nonlinear relationship among variables,better than PLS and PCR methods based on linear regression. Simulation based on the historical data set of the oxygen content in flue gas of a 1000 MW generation unit verifies the effectiveness of the scheme.
出处 《电力自动化设备》 EI CSCD 北大核心 2010年第10期54-57,共4页 Electric Power Automation Equipment
基金 国家自然科学基金资助项目(60974119)~~
关键词 核回归 核主元分析 参数估计 推断控制 KPCR kernel principal component analysis parameter estimation inferential control
  • 相关文献

参考文献21

  • 1熊志化,张卫庆,赵瑜,邵惠鹤.基于混合高斯过程的多模型热力参数测量软仪表[J].中国电机工程学报,2005,25(7):30-33. 被引量:8
  • 2JOSEPH B,BROSILOW C B. Inferential control of processes-1: steady state analysis and design[J]. AIChE Journal,1978,24(3): 485 -508. 被引量:1
  • 3熊志化,杨海滨,吴云峰,邵惠鹤.基于稀疏高斯过程的热力参数软仪表[J].中国电机工程学报,2005,25(8):130-133. 被引量:1
  • 4BASTIN G,DOCHAIN D. On-line estimation and adaptive control of bioreactors[M]. Amsterdam,Holland:Elsevier,1990:304-310. 被引量:1
  • 5BONNE D,JORGENSEN S B. Data-driven modeling of batch processes [ C ]//Proceedings of 7th International Symposium on Advanced Control of Chemical Processes. Hong Kong,China: [s.n.], 2004:812-817. 被引量:1
  • 6CASALI A,GONZALEZ G,TORRES F,et al. Particle size distribution soft-sensor for a grinding circuit[J]. Powder Technology, 1998,99(1 ) : 15-21. 被引量:1
  • 7CHAMPAGNE M,DUDZIC M,INC T,et al. Industrial use of multivariate statistical analysis for process monitoring and control [C]//Proceedings of American Control Conference. Anchorage, USA : [s.n. ],2002:594-599. 被引量:1
  • 8CHEN L,BERNARD O,BASTIN G,et al. Hybrid modeling of biotecbnological processes using neural networks[J]. Control Engineering Practice, 2000,8 (7) : 821-827. 被引量:1
  • 9CHEN J M,CHEN B S. System parameter estimation with input/ output noisy data and missing ts[J]. IEEE Transactions on Signal Processing,2000,48(6):1548-1558. 被引量:1
  • 10CHEN X,GAO F,CHEN G. A soft-sensor development for meh -flow-length measurement during injection mold filling[J]. Materials Science & Engineering A, 2004,384 (1-2) : 245-254. 被引量:1

二级参考文献46

  • 1Li, N., Li, S., Xi, Y..A Multiple Model Approach to Modeling Based on LPF Algorithm[J].Journal of Systems Engineering and Electronics,2001,12(3):64-70. 被引量:2
  • 2王东风,学位论文,2000年 被引量:1
  • 3丛爽,面向MATLAB工具箱的神经网络理论与应用,1998年 被引量:1
  • 4王永骥,神经元网络控制,1998年 被引量:1
  • 5何明一,神经计算.原理.语言.设计.应用,1992年 被引量:1
  • 6Martin G. Consider soft sensors[J]. Chemical Engineering Progress,1997, 7: 66-70. 被引量:1
  • 7Tresp V. Mixtures of Gaussian processes[C]. Advances in Neural Information Processing Systems 13, MIT Press, 2001. 被引量:1
  • 8Shi J Q, Murray-Smith R, Titterington D M. Hierarchical Gaussian process mixtures for regression[R]. Technical Report TR-2002-107,Department of Computing Science, University of Glasgow, Scotland,UK, 2002. 被引量:1
  • 9Rasmussen C E, Ghahramani Z. Infinite mixtures of Gaussian process experts[C]. Advances in Neural Information Processing Systems 14,MIT Press, 2002. 被引量:1
  • 10Abonyi J, Chovan T, SzeifertF. Identification of nonlinear systems using Gaussian mixture of local models[J]. Hungarian Journal of IndustrialChemistry, 2001, 29: 119-134. 被引量:1

共引文献38

同被引文献41

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部