期刊文献+

基于编码迁移的快速鲁棒视觉跟踪 被引量:1

Fast Robust Visual Tracking Based on Coding Transfer
下载PDF
导出
摘要 L1跟踪表示模型的稀疏性约束,使其对局部遮挡具有良好的鲁棒性,但同时也造成了跟踪速度慢的问题。针对此问题,该文提出使用编码迁移方法进行视觉跟踪。该方法利用低分辨率字典计算候选目标表示系数,并使用高分辨率字典构造观测似然,有效地减小了跟踪过程中的计算量。为了提高编码迁移的精度和字典适应背景干扰的能力,提出一种在线鲁棒判别式联合字典学习模型用于字典更新。实验结果表明所提方法具有良好的鲁棒性和较快的跟踪速度。 The sparsity constraint of the L1 tracker's representation model makes it have good robustness towards partial occlusion. However, the tracking speed of the L1 tracker is slow. To solve this study, this paper proposes a coding transfer method for visual tracking. By making use of the low-resolution dictionary to calculate coefficients of the candidate targets and the high-resolution dictionary to construct the observation likelihood model, the method reduces calculation amount effectively in the process of tracking. In order to improve the precision of coding transfer and the ability of the dictionary to overcome the background clutters, this study proposes an online robust discrimination joint dictionary learning model to update the dictionaries. The experimental results demonstrate that the proposed method has good robustness and superior tracking speed.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第7期1571-1577,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61175035 61379105)~~
关键词 L1跟踪 编码迁移 字典学习 粒子滤波 L1 tracker Coding transfer Dictionary learning Particle filter
  • 相关文献

参考文献4

二级参考文献49

  • 1Li Xi, Hu Wei-ming, Shen Chun-hua, et al: A survey of appearance models in visual object tracking[J]. ACM Tr'ansactior:s on Intelligent Systems and Technology, 2013, 4(4): 1-48. 被引量:1
  • 2Ross D, Lim J, Lin R S, et al: Incremental learning for robust visual tracking[J]. InterT:ational Journal of Computer Vision, 2008, 77(1-3): 125-141. 被引量:1
  • 3Mei Xue and Ling Hai-bin. Robust visual tracking using L1 minimization[C]. IEEE International Conference on Computer Vision, Kyoto, 2009: 1436-1443. 被引量:1
  • 4Black M J and Jepson A D. Eigentracking: Robust matching and tracking of articulated objects using a view-based representation[C]. European Conference on Computer Vision, London, 1996: 329-342. 被引量:1
  • 5Bao Cheng-long, Wu Yi, Ling Hal-bin, et al: Real time robust L1 tracker using accelerated proximal gradient approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012: 1830-1837. 被引量:1
  • 6Xing ,hm-liang, Gan Jin, Li Bing, et al: Robust object tracking with online multi-lifespan dictionary learning[C]. IEEE International Conference on Computer Vision, Sydney, 2013: 665-672. 被引量:1
  • 7Mairal J, Bach F, Ponce J, et al: Online dictionary learning for sparse coding[C]. The 26th International Conference on Machine Learning, Montreal, 2009: 539-547. 被引量:1
  • 8Wang Nai-yan, Wang ,Jing-dong, and Yeung D. Online robust non-negative dictionary learning for visual tracking[C]. IEEE International Conference on Computer Vision. Sydney, 2013: 657-664. 被引量:1
  • 9Yang Meng, Zhang Lei, Feng Xiang-chu, et al: Sparse representation based Fisher discrimination dictionary learning for image classification[C]. IEEE International Conference on Computer Vision, Barcelina, 2011: 543-550. 被引量:1
  • 10Richtarik P and Takac M. Iteration complexity of randomized block-coordinate decent methods for minimizing a composite function[J]. Mathematical Programming, 2014, 144(1): 1-38. 被引量:1

共引文献16

同被引文献1

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部