期刊文献+

一种多模型贝努利粒子滤波机动目标跟踪算法 被引量:16

Multiple Model Bernoulli Particle Filter for Maneuvering Target Tracking
下载PDF
导出
摘要 交互式多模型贝努利粒子滤波器(Interacting Multiple Model Bernoulli Particle Filter,IMMBPF)适用于杂波环境下的机动目标跟踪。但是IMMBPF将模型信息引入粒子采样过程中会导致用于逼近当前时刻真实状态与模型的粒子数减少,而且每次递推各模型间的粒子都要进行交互,存在计算量过大的缺点。为提升IMMBPF中单个采样粒子对于真实目标状态和模型逼近的有效性,该文提出一种改进的多模型贝努利粒子滤波器(Multiple Model Bernoulli Particle Filter,MMBPF)。预先选定每一个模型的粒子数,且模型间的粒子不需要进行交互,减少了计算负荷。模型概率由模型似然函数计算得到,在不改变模型的马尔科夫性质的条件下避免了小概率模型的粒子退化现象。仿真实验结果表明,所提出的MMBPF与IMMBPF相比,用较少的粒子数就可获得更优的跟踪性能。 Interacting Multiple Model Bernoulli Particle Filter(IMMBPF) is suitable for maneuvering target tracking under cluttered environment. However, when model information is introduced into particle sampling process in IMMBPF, it will lead to the number decline of particles which are applied to approaching the real state and model, and the computation load is heavy because of the interacting stage of particles in the recursion. An enhanced Multiple Model Bernoulli Particle Filter(MMBPF) is proposed to improve the effectiveness of single particle to approximate the real target state and model. The number of particles of each model is given in advance, and the posterior probability of each model is updated with the associate likelihood function, which avoids particle degeneracy without distorting the Markov property. Simulation results show that the proposed MMBPF achieves better tracking performance with fewer particles than IMMBPF.
作者 杨峰 张婉莹
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第3期634-639,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61135001 61374159 61374023) 西北工业大学研究生创意创新种子基金(Z2016149)~~
关键词 机动目标跟踪 贝努利滤波 粒子滤波 多模型 Maneuvering target tracking Bernoulli filter Particle filter Multiple model
  • 相关文献

参考文献2

二级参考文献10

  • 1Mazor E, Averbuch A, and Bar-shalom Y, et al.. Interacting multiple model methods in target tracking: A survey [J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34 (1): 103-122. 被引量:1
  • 2Blom H A P and Bar-shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. on Automatic Control, 1988, AC-33 (8): 780-783. 被引量:1
  • 3Lang Hong. Multirate interacting multiple model filtering for target tracking using multirate models. IEEE Trans. on Automatic Control, 1999, 44(7): 1326-1340. 被引量:1
  • 4Kim Byung-Doo and Lee Ja-Sung. IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking. 2005 IEEE International Radar Conference, Arlington, Virginia, USA, May 2005: 757-762. 被引量:1
  • 5Merwe van der R, Doucet A, and Freitas de N, et al.. The unscented particle filter. Technical Report CUED/FINFENG/R 380, Cambridge University Engineering Department, 2000. 被引量:1
  • 6Arulampalam M S, Maskell S, and Gordon N, et al.. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. on Signal Processing, 2002, 50 (2): 174-188. 被引量:1
  • 7Boers Y and Driessen J N. Interacting multiple model particle filter. IEE Proc.-Radar Sonar Navig., 2003, 150 (5): 344-349. 被引量:1
  • 8Blom H A P and Bloem E A. Particle filtering for stochastic hybrid systems. 43^rd IEEE Conference on Decision and Control, Nassau, Bahamas, 2004, 3: 3221-3226. 被引量:1
  • 9Morelande M R and Challa S. Maneuvering target tracking in clutter using particle filters. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (1): 252-270. 被引量:1
  • 10刘贵喜,高恩克,范春宇.改进的交互式多模型粒子滤波跟踪算法[J].电子与信息学报,2007,29(12):2810-2813. 被引量:21

共引文献30

同被引文献141

引证文献16

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部